Raw water lily (nymphaea lotus) leaves powder as an effective adsorbent for the adsorption of malachite green dye from aqueous solution

Document Type : Research Article

Authors

1 Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, Knao, Nigeria

2 Department of Science Laboratory Technology, School of Science and Technology, Abubakar Tatari Ali Polytechnic, PMB 0094, Bauchi-Nigeria

Abstract

In this present study, raw water lily leaves (RWL) powder was prepared and used as low cost, efficient and environmental friendly adsorbent for the removal of malachite green (MG) from aqueous solution. The adsorbent’s surface functional group, net neutral charge and morphology were analysed by FT-IR, Point of Zero charge and Scanning Electron (SEM) spectroscopic techniques which confirmed the effective adsorption of MG dyes onto the RWL adsorbent surface. Batch adsorption technique was employed under various optimized conditions including contact time, adsorbent dosage, adsorbate concentration, pH and temperature respectively with an adsorption capacity of 216.66mg/g and percentage adsorption of 99.5. The physical properties: moisture content (13.49%), ash content (9.81%), organic matter (90.19%), bulk density (0.263g/cm3), pore volume (1.66cm3), pH (5.74) of the adsorbent were obtained using standard methods. The kinetic data were best fitted by pseudo-second order in all the models tested under different operating temperatures. The adsorption isotherms were estimated, established and found to fit into Freundlich isotherm as compared to other models tested. Thermodynamics of the adsorption was found to be spontaneous and feasible with values of Gibb’s free energy (∆G) ranging between -9.481 to -9.880kJ/mol, exothermic with enthalpy (∆H) of -11.75kJ/mol and a decrease in randomness of the adsorption process during the transfer of molecules between the adsorbent and adsorbates with entropy (∆S) of -6.33kJ/mol. This study confirmed that RWL could be employed as a low cost and environmental friendly adsorbent for the removal of toxic dyes such as Malachite Green from aqueous solution

Keywords

Main Subjects


[1]  A. M. Ayuba, B. Idoko, Cowpea husk adsorbent for the removal of crystal violet dye from aqueous solution. Arabian Journal of Chemical Research. 8(1)(2021) 114-132.
[2]    A. T. Khan, N. Momina, Enhanced adsorptive Removal of a mild acid dye Bromothymol blue from aqueous solution using magnetic chitosan-Bambo sawdust composite. Batch and Column Studies. Environmental Progress & Sustainable Energy. 5(34) (2015) DOI: 10.1002/ep
[3]    H. Al-Aidy, E. Amdeha, Green adsorbent based on polyacrylic acid-acrylamide grafted starch hydrogels: the new approach for enhanced adsorption of malachite green dye from aqueous solution. International Journal of environmental analytical chemistry, (2020) ISSN: 0306-7319.
[4]    M. Wu, S. Zhao, R. Jing, Y. Shao, X. Liu, L. Fengzhu, X. Hu, Q. Zhang, Z. Meng, A. Liu, Competitive adsorption of anti-biotic tetracycline and Ciprofloxacin on montmorillonite. Journal of applied clay Sciences, 180 (2019) 105175.
[5]    M. Rajabi, K. Mahanppor, O. Moradi, Preparation of PMMA/GO and PMMA/GO-Fe2O3 nanocomposite for Malachite Green dye adsorption: kinetics and Thermodynamics Studies. Composite part B: Engineering, 167 (2019) 544-555.
[6]    G. Crini, H. N. Peindy, F. Gimbert, C. Robert, Removal of Malachite Green from aqueous solution by adsorption using cyclodextrin-based adsorbent: kinetic and Equilibrium studies. Journal of separation and Purification Technology, 53(1) (2017) 97-110.
[7]    W. T. Tsai, H. R. Chen, Removal of Malachite Green from aqueous solution using low-cost chlorella-based biomass. Journal of Hazardous Materials, 175(1-3) (2010) 844-849.
[8]    P. Saha, S. Chowdbury, S. Gupta, I. Kumar, R. Kumar, Assessment On the Removal of Malachite Green Using Tamarind Fruit Shell as Adsorbents. Clean Soil Air Water, 38 (2010) 437-445.
[9]    S. Chowdbury, P. Saha, Shea Shell Powder as a New Adsorbent to Remove Basic Green 4 (Malachite Green) From Aqueous Solutions: Equilibrium, Kinetics and Thermodynamics Studies. Chemical Engineering Journal, 164 (2010) 168-177.
[10] S. Ullah, A. Ur Rahman, F. Ullah, A. Rashid, T. Arshad, E. Viglasova, M. Galambos, M. N. Mahmoode, H. Ullah, Adsorption of Malachite green dye onto mesoporous natural inorganics clays: equilibrium isotherm and kinetic studies. Water, 13 (2021) 965.
[11] J. Zhang, L. Wang, G. Zhang, Z. Wang, L. Xu, Z. Fan, Influence of azo dye-TiO2 interaction on the filtration performance in a hybrid photocatalysis/ultrafiltration process. Journal of Colloid interface sciences, 389 (2013) 273-283.
[12] H. El-Boujaady, M. Mourabet, H. Bennani-Ziatni, A. Taitai, Adsorption/Desorption of Direct yellow 28 on apatitc phosphate: mechanism, Kinetics and Thermodynamics. Journal of the Association of Arabs Universities for basic and applied sciences 16 (2014) 64-73.
[13] N. M. Maezawa, H. Nakadoi, K. Suzuki, T. Furusawa, Y. Suzuki, S. Uchida, Treatment of dye wastewater by using photocalytic oxidation with sonification. Ultrasonic sonochemistry, 14(5) (2007) 615-620.
[14] M. Aazza, H. Moussout, R. Marzouk, H. Ahlafi, Kinetic & thermodynamics studies of malachite green adsorption on alumina. Journal of Materials and Environmental Sciences, 8(8) (2017), ISSN: 2028-2508, pp 2694-2703.
[15] S. Jayanthi, N. K. Eswar, S. A. Singh, K. Chatterjee, G. Madras, A. Sood, Macroporous Three Dimensional Graphene Oxides Foams for Dyes Adsorption and Antibacterial Applications. Royal Society Chemistry Advances, 6 (2016) 1231-1242.
[16] S. Bentahar, A. Dbiki, M. El-Khomri, N. El-Messaoudi, A. Lacherai, Adsorption of Methylene Blue, Crystal Violet and Congo Red from Binary and Ternary Systems with Natural Clay: Kinetics, Isotherms and Thermodynamics. Journal of Environmental Chemical Engineering, 5 (2017) 5921-5932.
[17] S. A. Sartape, M. A. Mandhare, V. V. Jadhav, D. P. Raut, A. M. Anusa, S. S. Kolekar,  Removal of malachite green dye from aqueous solution with sorption techniques using Limonia Acidissima (wood apple) Shell as low cost adsorbents. Arabian Journal of Chemistry, 10 (2017) 3229-3238.
[18] B. H. Hameed, M. I. El-khaiary, Malachite green adsorption by rattan sawdust: Isotherms, Kinetics and Mechanism Modelling. Journal of hazardous Materials, 159 (2008) 574.
[19] E. Sebata, M. Moyo, U. Guyo, N. P. Ngano, B. C. Nyamunda, F. Chigondo, M. S. Chitsa, Adsorptive Removal of atrazine from aqueous solutions using Bambara Groundnut hulls. International Journal of Engineering research and Technology, 2(5) (2013) 312-321.
[20] S. O. Giwa, J. S. Moses, A. A. Adeyi, A. Giwa, Adsorption of Atrazzine from aqueous solution using Desert Date Seed Shell activated Carbon. ABUAD Journal of Engineering Research & Development (AJERD), 1(3) (2018) 317-325.
[21] D. Prahas, Y. Kartika, N. Indraswati, S. Ismadji, Activated carbon from jackfruit peel waste by H3PO4 chemical activation: pore structures and surface chemistry characterization. Chemical Engineering Journal, 140 (2008) 32-42.
[22] C. C. O. Alves, A. S. Franca, L. S. Oliviera, Evaluation of an adsorbent based on agricultural waste (corn cob) for removal of Tyrosine and Phenylamine from aqueous solutions. Biomedical Research Journal International (2013) 1-5.
[23] T. Nharingo, N. M. Muzondo, E. Madungwe, F. Chigondo, U. Guyo, B. Nyumunda, Isotherm studies of the biosorption of Cu(II) from aqueous solution by vigna subterranean (L) Verdc hull. International Journal of Scientific Research and Technology, 2(4) (2013) 199-206.
[24] A. D. N’diaye, M. Sid’, M. Konkou Adsorption of Aspirin onto Biomaterials from aqueous solutions. Journal of materials and Environmental Sciences, 11 (2020) 1839-1845.
[25] D. Oznur, I. Fatma, T. Kadir, O. Mahmure, Sumec leaves as a Novel low cost adsorbent for removal of basic dyes from aqueous solution.  Hindawi publishing corporation (ISRN) analytical Chemistry volume (2013). Article ID. 1210470, 9 pages.
[26] U. I. Gaya, E. Otene, A. H. Abdullahi, Adsorption of aqueous Cd (II) and Pb(II) on activated carbon nanopores prepared by chemical activation of doum palm shell. SpringerPlus 4 (2015) 458.
[27] M. B. Ibrahim, M. S. Sulaiman, S. Sani, Assessment of adsorption properties of neem leaves waste for the removal of congo red and methylene orange. 3rdn international conference on biological, chemical and environmental sciences (BCES-2015) September 21-22, Kuala Lampur, Malaysia (2015).
[28] O. J. Amode, H. J. Santos, M. Z. Alam, H. A. Mirza, C. C. Mei, Adsorption of methylene Blue from aqueous solution using untreated and treated (Metroxylon spp) wate adsorbents: equilibrium and Kinetic studies. International Journal of Industrial Chemistry 7 (2016) 333-345.
[29] A. M. Ayuba, N. A. Thomas, Paraquat dichloride adsorption from aqueous solution using carbonised Bambara groundnut (vigra subterranean) shells. Bayero journal of pure and applied sciences, 12(1) (2019) 167-177. ISSN 2006-6996.
[30] K. M. Nasiruddin, A. Sawar, Determination of point of zero charge of natural and treated adsorbents. Surface review and letters,14, 3(2007) 461-469.
[31] S. M. Anisuzzaman, G. C. Joseph, A. M. S. B. W. Daud, D. Krishnaiah, H. S. Yee, Preparation and characterization of activated carbon from typha orientalis leaves. International Journal of Industrial Chemistry, 6 (2014) 9-21.
[32] M. B. Ibrahim, S. Sani, Neem (Azadirachta Indica) leaves for the removal of organic pollutants. Journal of geosciences and environmental protection, 3 (2015) 1-9.
[33] Z. Shahryari, S. A. Goharrizi, M. Azadi, Experimental study of methylene blue adsorption from aqueous solution onto a carbon nanotube. International Journal of water Resources and environmental engineering, 2(2) (2010) 016-028.
[34] S. O. Bello, A. K. Adegoke, O. O. Akinyinni, Preparation and characterization of novel adsorbents from Moringa Oleifera leaf. Appl. Water Sci. 7 (2017) 1295-1305. DOI: 10.1007/s13201-05-0345-4.
[35] A. Zulkania, H. F. Ghina, S. R. Amelia, The potential of activated carbon derived from bio-char pyrolysis as adsorbents. MATEC Web of Conferences 154 (2018), 01029. ICET4SD 2017.
[36] P. Ravichandran, P. Sugumaran, S. Seshadri, Preparation and Characterization of activated carbon derived from palmyra wastes coastal region. Preceding of international Conferences on “impact of Climate Change on Coastal Ecosystem” (ICC-ECO 2011). Athyabama University, Jappiar Nagar, Chennai, India (2011).
[37] B. A. Karim, B. Mounir, M. Hachkar, M. Bakasse, A. Yaacoubi, Adsorption/Desorption behaviour of cationic dyes on Moroccan Clay: equilibrium & Mechanism. Journal of Materials and Environmental Sciences. 8(3) (2017) 1082-1096.  
[38] P. K. Parhi, B. K. Bindhari, R. K. Mohapatra, S. Das, S. S. Behera, B. M. Murmur, Extensive Investigation on the study for the adsorption of Bromocresol Green (BCG) dye using activated phragmites karka. Indian Journal of Chemical Technology, 25 (2018) 409-420.
[39] K. A. G. Gusmao, L. V. A. Gurgel, T. M. S. Melo, L. F. Gil, Adsorption Studies of Methylene Blue and Gentian Violet On Sugarcane Bagasse Modified with EDTA Dihydride (EDTAD) In Aqueous Solutions: Kinetics & Equilibrium Aspects. Journal of Environmental Management, 118 (2013) 681-689.  
[40] L. K. Akinlola, A, M. Umar, Adsorption of Crystal Violet onto Adsorbents Derived from Agricultural Waste: Kinetics and Equilibrium Studies. Journal of Applied Science and Environmental Management, 19(2) (2015) 279-288.
[41] J. Zhang, L. Wang, G. Zhang, Z. Wang, L. Xu, Z. Fan, Influence of azo dye-TiO2 interaction on the filtration performance in a hybrid photocatalysis/ultrafiltration process. Journal of Colloid interface sciences, 389 (2013) 273-283.
[42] M. A. Bedmohata, A. R. Chaudhari, S. P. Singh, M. D. Choudhary, Adsorption capacity of activated carbon prepared by chemical activation of Lignin for the removal of methylene blue dye. International Journal of advanced Research in Chemical Science (IJARCS), 2(8) (2015) 1-13.
[43] X. Liu, F. Yan, Y. Wang, Q. Gau, S. Ren, Y. Wen, B. Shen, Synthesis and Characterization of Multi-Active Site Grafting Starch Copolymer Initiated by KMNO4 and HIO4/H2SO4 Systems. Journal of Carbohydrate Polymers, 117 (2015) 247-254.
[44] S. A. Yusuff, Adsorption of Hexavalent Chromium from Aqueous Solution by Leucaena Leucocephala Seed Pod Activated Carbon: Equilibrium, Kinetics and Thermodynamics Studies. Arab Journal of Basic and Applied Sciences (2019) DOI: 10.1080/25765299.2019.1567656.
[45] K. C. Enenebeaku, J. N. Okorocha, E. U. Enenebeaku, I. J. Okolie, B. Anukum, Adsorption of malachite green from aqueous solution by PNSBP: equilibrium, kinetic and thermodynamics studies. IOSR Journal of applied Chemistry, 9 (9) (2016) e-ISSN: 2278-5736, 28-38.
[46] N. Abdul-salam, S. K. Adekola, Adsorption studies of Zinc (II) on magnetite, baobab (Adensonia digitate) and magnetite-baobab composite. Journal of applied water Sciences, 8 (2018) 222.
[47] X. Han, J. Yuan, X. Ma, Adsorption of Malachite Green from aqueous solutions onto lotus leaf: Equilibrium, Kinetics and Thermodynamics Studies. Desalination and water Treatment, 52(2) (2013) 5563-5574.
[48] D. Pathania, S. Sharma, P. Singh, Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry (2017) DOI: 10.1016/j-arabjc.2013.04.021.
[49] Y. Al-degs, M. A. M. KHraisheh, S. J. Allen, M. N. Ahmad, G. M. Walker, Competitive adsorption of reactive dyes from solution: equilibrium isotherm studies in single and multisolute systems. Chemical Engineering Journal, 128 (2007) 163.
[50] M. Aazza, H. Moussout, R. Marzouk, H. Ahlafi, Kinetic & thermodynamics studies of malachite green adsorption on alumina. Journal of Materials and Environmental Sciences, 8(8) (2017), ISSN: 2028-2508, 2694-2703.
[51] X. Pan, D. Zhang, Removal of malachite green from water by firmiana simplex wood fiber, e-Journal of biotechnology, 12(4) (2009) ISSN: 0177-3458.
[52] L. R. Bonetto, F. Ferarini, C. DeMarco, J. S. Crespo, R. Guegun, M. Giovanela, Removal of Methyl violet 2B dye from aqueous solution using a magnetic composite as adsorbent. Journal of water process Engineering, 6 (2015)11-20.
[53] H. Khawaja, E. Zahir, M. Asif Asghar, M., Arif Asghar, Graphene oxide decorated with Cellulose and Copper nanoparticles as an efficient adsorbent the removal of malachite green. International Journal of Biological molecules, 167 (2021) 23-34.
[54] M. H. Dehgani, S. Tajik, A. Panahi, M. Khezri, A. Zarei, A. Heidarinejad, M. Yousefi, Adsorptive removal of noxious cadmium from aqueous solution using polyureaformaldehyde: a novel polymer adsorbent. MethodsX, 5 (2018) 1148-1155.
[55] I. Nica, C. Zaharia, R. I. Baron, S. Coseri, D. Suteu, Adsorptive materials based on preparation, characterization and application of copper ion retention. Cellulose Chemistry Technology, 54(5-6) (2020) 579-590.
[56] A. G. Farombi, O. S. Amuda, M. M. Raimi, A. O. Olayiwola, Studies on Naphthalene adsorption from contaminated water using hydroxyapatite produced from catfish bones. FUTA Journal of Research in sciences, 15(01) (2019) 150-163.
[57] N. Hassan, A. Shahat, A. El-Didamony, M. G. El-Desouky, A. A. El-Bindary, Equilibrium, Kinetic and Thermodynamics Studies of adsorption of cationic dyes from aqueous solution using ZIF-8. Molecular Journal of Chemistry, 8(3) (2020) 627-637.
[58] N. Wibowo, L. Setiyadhi, D. Wibowo, J. Setiawan, S. Ismadji, Adsorption of Benzene & Toluene from Aqueous Solution onto Activated Carbon and Its Acid & Treated Forms: Influence of Surface Chemistry On Adsorption. Journal of Hazardous Materials, 146 (2017) 237-242.
[59] M. K. Dahri, M. R. R. Kooh, L. B. Lim, Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamics and regeneration studies. Journal of environmental chemical engineering, 2(3) (2014) 1434-1444.
[60] A. Machrouhi, M. Farnane, A. Elhalil, M. Abdennouri, H. Tounsadi, N. Barka, Heavy metals biosorption by thapsiantran stagana stems powder: Kinetics, equilibrium and thermodynamics. Molecular Journal of Chemistry, 7(1) (2019) 098-110.