Highly Selective Perchlorate Coated-Wire Electrode (CWE) based on an Electrosynthesized Dixanthylinum Dye and Its Application in Water Samples

Document Type : Research Article

Authors

1 Assistance Professor, Analytical Chemistry (PhD) Faculty of Intelligence and Criminal Investigation Science and Technology Police University, P.O. Box 14515/1397, Tehran, Iran Office: 021-48931184

2 Tarbiat Modares University

Abstract

The fabrication, performance, and utilization of perchlorate coated-wire electrode (perchlorate-CWE) based on dixanthylinum dye concerning the response towards perchlorate ions was defined. The recommended electrode exhibits a Nernstian response for perchlorate by a wide concentrations range of 1.0×10−6 to 6.1×10−2 M, with a slope of -57.4 mV in comparison to other anions. The limit of detection is 5.0×10−7 M. It has a quick response time of ~4 seconds. The recommended electrode shows adequately good discriminating ability towards perchlorate ions in comparison to other anions and it is profitably applied to the direct determination of perchlorate ions in water samples.

Keywords

Main Subjects


[1] P. Kumarathilaka, C. Oze, S.P. Indraratne, M. Vithanage, Perchlorate as an emerging contaminant in soil, water and food, Chemosphere, 150 (2016) 667-677.
[2] D.L.F. Chang, E.N. Pearce, Screening for Maternal Thyroid Dysfunction in Pregnancy: A Review of the Clinical Evidence and Current Guidelines, Journal of Thyroid Research, 2013 (2013) 8.
[3] I.W.G.o.t.E.o.C.R.t. Humans, I.A.f.R.o. Cancer, W.H. Organization, Some Thyrotropic Agents, International Agency for Research on Cancer, 2001.
[4] G. Mastorakos, E.I. Karoutsou, M. Mizamtsidi, G. Creatsas, The menace of endocrine disruptors on thyroid hormone physiology and their impact on intrauterine development, Endocrine, 31 (2007) 219-237.
[5] M.A. Greer, G. Goodman, R.C. Pleus, S.E. Greer, Health effects assessment for environmental perchlorate contamination: the dose response for inhibition of thyroidal radioiodine uptake in humans, Environ. Health Perspect., 110 (2002) 927-937.
[6] E.T. Urbansky, Perchlorate as an environmental contaminant, ENVIRON SCI POLLUT R, 9 (2002) 187-192.
[7] R.C. Pleus, L.M. Corey, Environmental exposure to perchlorate: A review of toxicology and human health, Toxicol. Appl. Pharmacol., 358 (2018) 102-109.
[8] S. Susarla, T.W. Collette, A.W. Garrison, N.L. Wolfe, S.C. McCutcheon, Perchlorate Identification in Fertilizers, Environ. Sci. Technol., 33 (1999) 3469-3472.
[9] C.W. Trumpolt, M. Crain, G.D. Cullison, S.J.P. Flanagan, L. Siegel, S. Lathrop, Perchlorate: Sources, uses, and occurrences in the environment, Remediation Journal, 16 (2005) 65-89.
[10] W.E. Motzer, Perchlorate: Problems, Detection, and Solutions, Environ. Forensics, 2 (2001) 301-311.
[11] J. Akhavan, The Chemistry of Explosives, Royal Society of Chemistry, 2011.
[12] L. Trasande, R.M. Shaffer, S. Sathyanarayana, Food Additives and Child Health, Pediatrics, 142 (2018).
[13] J. Cole-Dai, K.M. Peterson, J.A. Kennedy, T.S. Cox, D.G. Ferris, Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record, Environ. Sci. Technol., 52 (2018) 8373-8380.
[14] M.H. Hecht, S.P. Kounaves, R.C. Quinn, S.J. West, S.M.M. Young, D.W. Ming, D.C. Catling, B.C. Clark, W.V. Boynton, J. Hoffman, L.P. DeFlores, K. Gospodinova, J. Kapit, P.H. Smith, Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site, Science, 325 (2009) 64-67.
[15] A.B. Kirk, E.E. Smith, K. Tian, T.A. Anderson, P.K. Dasgupta, Perchlorate in Milk, Environ. Sci. Technol., 37 (2003) 4979-4981.
[16] L. Yu, J.E. Cañas, G.P. Cobb, W.A. Jackson, T.A. Anderson, Uptake of perchlorate in terrestrial plants, Ecotoxicol. Environ. Saf., 58 (2004) 44-49.
[17] B. Kirk Andrea, V. Dyke Jason, F. Martin Clyde, K. Dasgupta Purnendu, Temporal Patterns in Perchlorate, Thiocyanate, and Iodide Excretion in Human Milk, Environ. Health Perspect., 115 (2007) 182-186.
[18] N.R. Council, Health Implications of Perchlorate Ingestion, The National Academies Press, Washington, DC, 2005.
[19] L. Ginsberg Gary, B. Hattis Dale, R.T. Zoeller, C. Rice Deborah, Evaluation of the U.S. EPA/OSWER Preliminary Remediation Goal for Perchlorate in Groundwater: Focus on Exposure to Nursing Infants, Environ. Health Perspect., 115 (2007) 361-369.
[20] X. Han, G. Xu, S. Dong, E. Wang, Studies of Perchlorate Triggered Ion-Gate Behavior of sBLM by Electrochemiluminescence and Its Application to a Sensor for Perchlorate, Electroanalysis, 14 (2002) 1185-1190.
[21] N.B. Messaoud, A. Baraket, C. Dridi, N.M. Nooredeen, M.N. Abbas, J. Bausells, A. Streklas, A. Elaissari, A. Errachid, Development of a Perchlorate Chemical Sensor Based on Magnetic Nanoparticles and Silicon Nitride Capacitive Transducer, Electroanalysis, 30 (2018) 901-909.
[22] G. Hefter, A simple gravimetric method for the determination of perchlorate, Monatsh. Chem., 149 (2018) 323-326.
[23] J.S. Fritz, J.E. Abbink, P.A. Campbell, Spectrophotometric Determination of Perchlorate, Anal. Chem., 36 (1964) 2123-2126.
[24] W.J. Collinson, D.F. Boltz, Indirect spectrophotometric and atomic absorption spectrometric methods for determination of perchlorate, Anal. Chem., 40 (1968) 1896-1898.
[25] H. Dong, K. Xiao, Y. Xian, Y. Wu, L. Zhu, A novel approach for simultaneous analysis of perchlorate (ClO4−) and bromate (BrO3−) in fruits and vegetables using modified QuEChERS combined with ultrahigh performance liquid chromatography-tandem mass spectrometry, Food Chem., 270 (2019) 196-203.
[26] A.H. Schröder, K. Cammann, Working with Ion-Selective Electrodes: Chemical Laboratory Practice, Springer Berlin Heidelberg, 2012.
[27] J. Ježková, J. Musilová, K. Vytřas, Potentiometry with perchlorate and fluoroborate ion-selective carbon paste electrodes, Electroanalysis, 9 (1997) 1433-1436.
[28] M. Cuartero, A. Ruiz, D.J. Oliva, J.A. Ortuño, Multianalyte detection using potentiometric ionophore-based ion-selective electrodes, Sens. Actuators, B, 243 (2017) 144-151.
[29] T. Luo, S. Abdu, M. Wessling, Selectivity of ion exchange membranes: A review, J. Membr. Sci., 555
(2018) 429-454.
[30] M.R. Ganjali, M. Yousefi, T. Poursaberi, L. Naji, M. Salavati-Niasari, M. Shamsipur, Highly Selective and Sensitive Perchlorate Sensors Based on Some Recently Synthesized Ni(II)-Hexaazacyclotetradecane Complexes, Electroanalysis, 15 (2003) 1476-1480.
[31] A.C. Wilson, K.H. Pool, An improved ion-selective electrode for perchlorate, Talanta, 23 (1976) 387-388.
[32] V.K. Gupta, A.K. Singh, P. Singh, A. Upadhyay, Electrochemical determination of perchlorate ion by polymeric membrane and coated graphite electrodes based on zinc complexes of macrocyclic ligands, Sens. Actuators, B, 199 (2014) 201-209.
[33] F. Gholamian, M.A. Sheikh-Mohseni, M. Salavati-Niasari, Highly selective determination of perchlorate by a novel potentiometric sensor based on a synthesized complex of copper, Mater. Sci. Eng., C, 31 (2011) 1688-1691.
[34] A. Nezamzadeh-Ejhieh, A. Badri, Application of surfactant modified zeolite membrane electrode towards potentiometric determination of perchlorate, J. Electroanal. Chem., 660 (2011) 71-79.
[35] A.A. Memon, A.R. Solangi, S. Memon, A.A. Bhatti, A.A. Bhatti, Highly Selective Determination of Perchlorate by a Calix[4]arene based Polymeric Membrane Electrode, Polycyclic Aromat. Compd., 36 (2016) 106-119.
[36] H.E.K. Ertürün, A.D. Özel, M.N. Ayanoğlu, Ö. Şahin, M. Yılmaz, A calix[4]arene derivative-doped perchlorate-selective membrane electrodes with/without multi-walled carbon nanotubes, Ionics, 23 (2017) 917-927.
[37] J. Lizondo-Sabater, M.a.-J. Seguı́, J.M. Lloris, R. Martı́nez-Máñez, T. Pardo, F. Sancenón, J. Soto, New membrane perchlorate-selective electrodes containing polyazacycloalkanes as carriers, Sens. Actuators, B, 101 (2004) 20-27.
[38] B. Rezaei, S. Meghdadi, S. Bagherpour, Perchlorate-selective polymeric membrane electrode based on bis(dibenzoylmethanato)cobalt(II) complex as a neutral carrier, J. Hazard. Mater., 161 (2009) 641-648.
[39] B. Rezaei, S. Meghdadi, V. Nafisi, Fast response and selective perchlorate polymeric membrane electrode based on bis(dibenzoylmethanato) nickel(II) complex as a neutral carrier, Sens. Actuators, B, 121 (2007) 600-605.
[40] M. Shamsipur, A. Soleymanpour, M. Akhond, H. Sharghi, A.R. Hasaninejad, Perchlorate selective membrane electrodes based on a phosphorus(V)–tetraphenylporphyrin complex, Sens. Actuators, B, 89 (2003) 9-14.
[41] M.A. Zanjanchi, M. Arvand, M. Akbari, K. Tabatabaeian, G. Zaraei, Perchlorate-selective polymeric membrane electrode based on a cobaloxime as a suitable carrier, Sens. Actuators, B, 113 (2006) 304-309.
[42] M. Mazloum Ardakani, M. Jalayer, H. Naeimi, H.R. Zare, L. Moradi, Perchlorate-selective membrane electrode based on a new complex of uranil, Anal. Bioanal. Chem., 381 (2005) 1186-1192.
[43] R. Gil, C.G. Amorim, L. Crombie, P. Kong Thoo Lin, A. Araújo, M. da Conceição Montenegro, Study of a Novel Bisnaphthalimidopropyl Polyamine as Electroactive Material for Perchlorate-selective Potentiometric Sensors, Electroanalysis, 27 (2015) 2809-2819.
[44] M.R. Ganjali, P. Norouzi, F. Faridbod, M. Yousefi, L.
       Naji, M. Salavati-Niasari, Perchlorate-selective membrane sensors based on two nickel-hexaazamacrocycle complexes, Sens. Actuators, B, 120 (2007) 494-499.
[45] A. Hulanicki, A. Michalska, A. Lewenstam, Observed redox interferences of poly(pyrrole)-based perchlorate-selective electrodes, Electroanalysis, 6 (1994) 604-605.
[46] M. Sharp, A study of liquid-membrane perchlorate-selective electrodes made from an organic radical ion salt, Anal. Chim. Acta, 65 (1973) 405-416.
[47] R.W. Gullick, M.W. Lechevallier, T.S. Barhorst, Occurrence of perchlorate IN DRINKING WATER SOURCES, J Am Water Works Assoc, 93 (2001) 66-77.
[48] N. Alizadeh, M. Babaei, M. Aghamohammadi, S. Rohani, Electrosynthesis of dixanthylene photochromic dye, characterization and ab initio calculations, Dyes Pigm, 76 (2008) 596-603.
[49] Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, S. Amemiya, Potentiometric Selectivity Coefficients of Ion-Selective Electrodes. Part I. Inorganic Cations (Technical Report), in:  Pure Appl. Chem., 2000, pp. 1851.
[50] E. Bakker, E. Pretsch, P. Bühlmann, Selectivity of Potentiometric Ion Sensors, Anal. Chem., 72 (2000) 1127-1133