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1. Introduction 

      the pipes are investigated Some applications of solar 

and flow radiation on by researchers [1-17]. Exergy and 

energy are studied of different solar and radiative 

operators in several cases [18-23]. Laboratory, 

numerical and theoretical studies on the solar collectors 

and radiation in different methods has been carried out 

[24-33]. Analysis of thermal solar systems has been 

tested based on vacuum tube technology [34, 35, 36]. 

Radiant flow are studied Economic analysis and 

environmental impact, storage, criteria Evaluation, 

modeling of solar system [37, 38, 39, 40, 41, 42, 43]. 

Solar water heaters and solar dryers have been tested on 

several occasions [44, 45, 46, 47, 48, 49, 50]. short pipe 

is studied Solar water-heater performance consisting of 

a ring separating welding current by Ziapour, et al [51].   

evacuated pipe collector is checked the impact of tank 

water temperature on performance of solar thermal 

system equipped with heat pipe collector by Porras-

Prieto, et al [52]. Solar collectors is studied development 

of evacuated tube by M. A. Sabiha, et al [53]. energy 

absorption/storage are surveyed solar systems with heat 

pumps of thermal by Grazia Leonzio et al [54]. Solar 

heat flux is tested heat transfer to super-critical water in 

a vertical pipe by Zhang, et al [55]. The feasibility of 

solar water heating system activation with evacuated 

pipe collector has been tested by Mazarrón, et al in 2016 

[56]. Evacuated pipe and thermoelectric Modules are 

studied a novel solar still device equipped by Shafii, et 

al in 2016 [57]. Selective solar absorber coating in 

collector pipes for CSP- the process of energy 

generation and induction heating- has been represented 

in 2014 by Joly, et al [58]. Different liquids are 

investigated for laboratory and numerical analysis of 

researches, solar spiral pipe and photovoltaic/thermal 
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Convection flow is passed in a pipe wall possessing radiation-convection, in order 

to find the best case with at least enthalpy and minimum entropy generation, 

through pipe wall having radiant flow. Flow in developed laminar conditions is 

investigated. Radiant flow is simulated Passing the natural convection on the wall 

with for 6 cases. Variation of radiation along the pipe touching with natural 

convection causes to change temperature, entropy generation and enthalpy for 

each case. Different profiles are investigated distributions of temperature, entropy 

generation and enthalpy along the radius. Along the wall are shown variation in 

enthalpy and entropy generation. There have been increased in radiation-

convection boundary conditions temperature, enthalpy as well as entropy 

generation. Along the radius and axis have appropriately been increased in 

radiation boundary conditions than convection, the amounts of enthalpy. Near the 

wall are occurred the most changes in temperature, enthalpy and entropy 

generation. Application the thermal boundary conditions are used for minimum 

entropy generation make fluid with high prandtl number to become high thermal 

carrier. Solar radiation application are used in Parabolic Trough, Parabolic Dish, 

Solar Chimney and tube furnace in various cases. Application are used for 

minimum entropy generation. 
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collector with different liquids have been investigated 

by Joly, et al [59]. The application of energy 

technologies based on heat and power generation has 

been presented by Modi, et al [58]. Numerical and 

experimental studies on natural convection, heat transfer 

properties and vertical heat exchanger tubes with 

different diameters have been carried out by Chen, et al 

[60].  Design and characteristics of a novel tapered tube 

bundle receiver for high-temperature solar system has 

been represented by Xu, et al [61]. Thermal 

performance of direct-flow coaxial evacuated-tube solar 

collectors with and without a heat shield has been 

performed by Zhang, et al [62]. Natural convective flow 

in a vertical tube inspired by alternate heat has been 

studied by Jha, et al [63]. Investigation of heat transfer 

liquids in collector tube utilized in concentrating solar 

thermal systems have been carried out by Benoit, et al 

[64]. Convective heat transfer of fluids is investigated, 

in supercritical pressure of the pipe, by Huang, et al 

[65]. Experimental and numerical investigation of pipe 

latent heat energy storage unit in the tank has been 

shown by Meng, et al [66]. Thermal modeling of 

evacuated tube solar air collectors has thermally been 

simulated by Paradis, et al [67]. Improvement of thermal 

performance of flat plate and evacuated solar tube 

collector has been investigated by Muhammad, et al 

[68]. A series of spiral absorber tubes for solar focus 

have been tested by Good, et al [69]. The effect of spiral 

tube dimensions in open-channel heat transfer followed 

by natural convection has been studied by Hao, et al 

[70]. Numerical analysis of a solar tower receiver tube 

operated with liquid metals has been investigated by 

Marocco, et al [71]. There are studied entropy 

generation of a solar collector and the effect of tube 

roughness, nanoparticle size, and various thermo-

physical models have been by Mahian, et al [72]. 

Performance of a solar reactor possessing evacuated 

tube collector in the natural state have been realized by 

Singh, et al [73]. analytical results are performed with 

experimental investigation of the bending of solar 

absorber tube comparison with by Khanna, et al [74]. 

Three-dimensional numerical investigation of mixed 

laminar convection trough solar collector tubes has been 

shown by li et al [75]. The least amount of entropy 

generation on the tubes in different situations is 

analyzed [76, 77, 78, 79, 80, 81, 82, 83, 84, 85].  

Experimental study of natural convection heat transfer 

in a physical model of a room, several times larger than 

a thermal thermosiphon, solar water heaters has been 

displayed [86]. Heat removal system are performed 

three-dimensional CFD simulations to study the effect 

of inclination of condenser tube on natural convection 

and thermal stratification in by Minocha, et al [87]. 

Bejan and Jiji [88, 89] have studied convective heat 

transfer in 2013 and 2016. By applying a constant 

Radiant and convective heat transfer in different parts of 

the pipe wall, developed laminar flow of the pipe for 6 

cases is investigated. The effects of transient convective 

heat transfer on radiative heat transfer have been 

simulated. The significant amount of radiation than 

convection has been applied. For each case, distribution 

of temperature, enthalpy and entropy generation along 

the radius and axis have been studied. Finally, a simple 

with the minimum enthalpy and entropy generation, to 

achieve better economic efficiency, has been 

considered. Since the enthalpy and entropy generation 

are of basic concepts, other dimensionless numbers 

related to these quantities can be measured.  

 

2. Physical model 

     A pipe with 0.025m diameter and 1m length has been 

divided to 5 parts. Transient changes in convective heat 

transfer on radiative heat transfer tube have been studied 

in six cases. The fluid velocity in the pipe is constant by 

Prandtl number of 13400 . Fluid regime is laminar and 

velocity profile is uniform for all cases. Temperature, 

enthalpy and entropy profiles for all cases are variable. 

Pipe geometry specifications and fluid properties have 

been utilized in Table 1 

 
 

    The 30 ×300 tube meshing in longitudinal and lateral 

direction for symmetry mode has been regarded. 

Permanent conditions govern the issue. There is non-

condensing fluid and a high Prandtl number. A 

schematic of the tube in which heat flux is in contact 

with convection is given in Figure 1.  

3. Governing equations 

 Heat transfer equations prevailing the pipe two-

dimensional coordinates are given below [88].  

Table 1, 

Fluid properties and pipe geometry  

Fluid properties Variable value 

Specific heat transfer )/( kgkjC p
 

1845 

at constant pressure   

Thermal conductivity )/( mkwk
 

0.146 

Density )/( 3mkg
 

889 

Viscosity (at Tref) )/( 2mNS
 

1.06 

Prandtl number  , pr  13400 

Inlet axial fluid velocity  
)/( smVi

 

0.02 

Inlet fluid temperature  

Ti(k) 
 

273.15 

 
 0.9 

 )(kT
 

1500 

 )(kT
 

300 

geometry of pipe   

Pipe length )(mD
 

0.025 

Pipe diameter )(mL
 

1 



Chem Rev Lett 2 (2019) 165-175 

132 

 

 

 

  
Figure1; A schematic of the pipe convective heat transfer and 

radiation 

1.1. Continuity equation: 
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1.2. Momentum equation: 

In the direction of r: 





















































2

2

)(
1

z
r

rrrr

P

zr

r
r

r
z

r
r










                                                                
(3-2-1) 

In the direction of z: 
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1.3. Energy equations in r and z coordinates: 
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Where energy loss is as follows: 
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1.4. Entropy generation in the direction of r and z: 

                                                                           

According to the high heat flux of walls and high 

Prandtl number of fluid with no, high amounts of 

enthalpy and entropy generation are created. The 

amounts of enthalpy and entropy generation, in uniform 

radiation, are dramatically more than the amount of 

convective heat transfer. Energy loss term shows radius 

velocity gradients in the direction x and z as well as 

axial velocity gradient in the direction of radius. Entropy 

generation displays thermal conductivity amounts, 

temperature changes long the radius and axis as well as 

the amount of energy loss. 

4. Problem definition 

The aim of this research is to find the least amounts of 

 entropy generation and enthalpy in industry along the 

pipe. Transient convective heat transfer on radiative heat 

transfer for 6 cases is reviewed. In radiation and 

convection, we have T=1500k and h=20w/m2k. The 

obtained values for temperature, enthalpy and entropy 

generation along the r, z in various cases have been 

investigated. In the first case, only constant heat flux is 

applied to the wall and in the 6th case, only convective 

heat transfer boundary conditions is applied. In the other 

cases, transient convective heat transfer is applied. 

Finally in simulation, a case with the highest economic 

efficiency is considered. 

5. Results and discussion 

Regarding the Figures 2 and 3, due to the high amount 

of radiation rather than convection, temperature along 

the wall, in the boundaries with current radiation, is 

much more. Temperature in the pipe center is constant. 

In a certain length of the pipe, temperature near the wall 

is equal or more than the center. Within a specified 

radius along the walls, in the direction of the fluid, 

temperature increases. Changes in entropy generation 

along the radius, in 4 sections of the pipe for 6 cases, 

have been studied. Entropy generation in radiation is 

increasingly more than the convection. In the borders of 

radiative and convective heat transfers, entropy 

generation is significantly more than radiative and 

convective heat transfer. Entropy generation, in the 

middle of pipe up to a radius of 0.006 meter, is constant. 

The most changes of this range happen near the wall. 

For the first and last cases, possessing only radiation and 

convection respectively, entropy generation profiles 

versus the pipe radius are almost similar. For cases with 

radiative heat transfer boundary conditions, charts are 

coiled and have few concavities. For the case with 

convective heat transfer boundary conditions, two 

upward and downward concaves have been shown in 

Figure 4.
 As shown in Figure 5, the amount of 

enthalpy along the radius for radiation boundary 

conditions is more than convection boundary 

conditions. In a specified radius, the amount of 

enthalpy in the end of pipe is more than the 

beginning. Enthalpy in convection boundary 

conditions is negative. Radiative heat transfer along 

the radius and pipe is always positive. In these 

cases, as radius increases, enthalpy value enhances.  
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Figure 3. Distribution of temperature along the radius for 6 cases
 

Figure 4. Distribution of entropy generation along the radius in 6 cases 
 

Figure 2. Convective heat transfer and radiation in contact with the wall for 6 case 
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Applying heat transfer, enthalpy changes as well as its 

amounts along the wall increase. The amounts of 

radiative heat transfer is significantly higher than that of 

convective heat transfer. For cases 2-5, the amounts of 

enthalpy along the pipe wall, under convective and 

radiative heat transfer boundary conditions are 

 ascending, but the rate of increase in enthalpy of 

convective heat transfer boundary conditions compared 

with radiative heat transfer is negligible. In comparison 

with radiative heat transfer, the amount of convective 

heat transfer along the the pipe axis is constant, as 

illustrated in Figure 6. 

  

When convective heat transfer passes radiative heat 

transfer, except under convective and radiative heat 

transfer boundary conditions, increasing the pipe 

lenghth decreases entropy generation. The maximum 

amounts of entropy generation, in these cases, are 

created in convective and radiative heat transfer 

boundary conditions. As investigated in Figure 7, the 

amount of entropy generation for the first case in 

radiative heat transfer boundary conditions is greatly 

more than the sixth one in convective heat transfer 

boundary conditions. 

 

  

 

 

 

 

 

Figure 5. Enthalpy distribution along the pipe radius for 6 cases  

 

Figure 6. Enthalpy distribution along the axis in 6 cases   
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6. Conclusion 

By solar radiation and heating containers such as glass 

jars and other applications mentioned in literatures, 

radiative heat transfer is created on the pipes or 

channels. Convective flow is also provided by natural or 

forced convection on the pipes or channels. Observed 

results and Figure are created Passing convection 

through the pipes or channels having radiative heat 

transfer. Solar radiation application are used in 

Parabolic Trough, CRS, Parabolic Dish, Solar Chimney, 

Fresnel Collector, and Parabolic Trough Solar and tube 

Furnace in various cases for minimum entropy 

generation.  
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