Arundo donax L. as a low-cost and promising biosorbent for the removal of crystal violet from aqueous media: kinetic, isotherm and thermodynamic investigations

Document Type : Research Article


1 department of fundamental sciences, unversity of jijel 18000, Algeria

2 Department of Environmental Sciences and Agronomic Sciences, Faculty of Nature Life and Sciences, University of Mohamed Seddik BenYahia Jijel, BP 98 Ouled Aissa, Jijel 18000, Algeria.

3 department of process engineering, University of Laghouat, Algeria


In the present study, Arundo donax L was used as a low-cost biosorbent for the uptake of basic dye crystal violet (CV) from aqueous media. Systematic batch mode studies of adsorption of crystal violet (CV) on Arundo donax were carried out as a function of process of parameters includes initial CV concentration, dose of adsorbent, pH, contact time and temperature. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) isotherm models. The adsorption of CV followed the Langmuir model with a maximum adsorption capacity (qmax) of 19.60 mg/g and pseudo second-order kinetics under a specified set of conditions. The thermodynamic parameters like free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) changes for the adsorption of CV ions have been evaluated and it has been found that the reaction was spontaneous and exothermic in nature.
Owing to its rapid adsorption rate and uptake capacity, stem of Arundo donax L. seems to be a promising biosorbent for removal of toxic dyes from wastewater.

Graphical Abstract

Arundo donax L. as a low-cost and promising biosorbent for the removal of crystal violet from aqueous media: kinetic, isotherm and thermodynamic investigations


[1]     F.Z. Benhachem, T. Attar, F. Bouadbdallah. Kinetic study of adsorption methylene blue dye from aqueous using activated carbon from starch. Chem.Rev. Lett., 2(2019) 33-39.
[2]     S.S. Azhar, A.G. Liew, D. Suhardy, K.F. Hafiz, M.D.I. Hatim. Dye removal from aqueous solution by using adsorption on treated sugarcane bagasse. Am. J. Appl. Sci., 200(2005) 1499-1503.
[3]     M.X Wang., Q.L.Zhang, S.J. Yao, A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem. Eng. J., 259 (2015)837-844.
[4]     S.Wang, Y. Boyjoo, A. Choueib, Z.H.U. Zhu, Removal of dyes from aqueous solution using fly ash and red mud. Water Res., 39 (2005) 129-138.
[5]     Y. Lin, X. He, G.Han, Q. Tian, W. Hu, Removal of crystal violet from aqueous solution using powdered mycelial biomass of Ceriporia lacerata P2. J. Environ. Sci., 23(2011) 2055-2062.
[6]     Saeed, M. Sharif, M. Iqbal, Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Bioresour  Technol., 179(2010) 564-572.
[7]     U.A. Guler, M. Ersan, E. Tuncel, F. Dügenci, Mono and simultaneous removal of crystal violet and safranin dyes from aqueous solutions by HDTMA-modified Spirulina sp.Process Saf. Environ. Prot., 99(2016)194-206.
[8]     Szyguła, E. Guibal, M. Arino Palacín, M. Ruiz, AM. Sastre, Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J. Environ. Manag., 90(2009) 2979-2986.
[9]     E. Alventosa-de Lara, S. Barredo-Damas, M.I. Alcaina-Miranda, MI. Iborra-Clar, Ultra filtration technology with a ceramic membrane for reactive dye removal: optimization of membrane performance. J. Hazard. Mater., 209-210(2012) 492-504.
[11]  T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide. J. Colloid Interface Sci., 371(2012) 101-106.
[12]  J.Paul, K.P.Rawat, K.S.S.Sarma, S. Sabharwal, Decoloration and degradation of Reactive Red-120 dye by electron beam irradiation in aqueous solution. Appl. Radiat. Isot., 69(2011) 982-987.
[13]  G. Moussavi, M. Mahmoudi, Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals. Chem. Eng. J., 152(2009) 1-7.
[14]  F. Krika, O.F. Benlahbib, Removal of methyl orange from aqueous solution via adsorption on cork as a natural and low-coast adsorbent: equilibrium, kinetic and thermodynamic study of removal process. Desalin. Water Treat., 53(2015) 3711-3721
[15]  X.S.Wang, J.P. Chen, Removal of the azo dye Congo red from aqueous solutions by the marine alga Porphyra yezoensis Ueda, Clean Soil Air Water 37 (2009)793-798
[16]  G. Bell (1997). Ecology and management of Arundo donax, and approaches to riparian habitat restoration in Southern California. In Brock, J. H., Wade, M., Pysek, P., and Green, D. (Eds.): Plant Invasions: Studies from North America and Europe. Blackhuys Publishers, Leiden, The Netherlands, 103-113.
[17]  LG. Angelini, L. Ceccarini, E. Bonari, Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. Eur. J. Agron., 22(2005) 375-389.
[18]  Lewandowski, JMO. Scurlock, E. Lindvall, M. Christou, The development and status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(2003) 335-361.
[19]  A.A. Shatalov, H. Pereira, Arundo donax L. reed, new perspectives for pulping and bleaching. Part 4. Peroxide bleaching of organosolv pulps, Bioresour. Technol., 96(2005) 865-872.
[20]  T.Vernersson, P.R. Bonelli, E.G. Cerrella, A.L. Cukierman, Arundo donax cane as a precursor for activated carbons preparation by phosphoric acid activation. Bioresour. Technol., 8 (2002) 95-104.
[21]  G. Mavrogianopoulos, V. Vogli, S. Kyritsis, Use of wastewater as a nutrient solution in a closed gravel hydroponic culture of giant reed (Arundo donax). Bioresour. Technol., 82(2002) 103-107.
[22]  H. Deng, Z.H. Ye, M.H. Wong, Accumulation of lead, zinc, copper and cadmium by wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut., 132(2004) 29-40.
[23]  H.L. Song, L. Liang, K.Y. Yang, Removal of several metal ions from aqueous solution using powdered stem of Arundo donax L. as a new biosorbent. Chem. Eng. Res. Des., 92(2014) 1915-1922.
[24]  LS. Balistrieri, J.W. Murray, The surface chemistry of goethite (α-FeOOH) in major ion seawater. Am. J. Sci., 281(1981) 788-806.
[25]  SL.Goertzen, K.D. Theriault, AM Oickle, AC. Tarasuk, HA. Andreas, Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination, Carbon 48(2010) 1252-1261.
[26]  S. Lagergren, About the theory of so-called adsorption of soluble substances, Handl., 24(1898) 1-39.
[27]  YS. Ho, MC. Kay, Pseudo-second-order model for sorption processes. Process Biochem., 34(1999) 451-465.
[28]  WJ. Weber, JC. Morris, Kinetics of adsorption on carbon from solution, J Sanit Eng Div., 89(1963) 31-59.
[29]  J. Eastoe, JS. Dalton, Dynamic surface tension and adsorption mechanisms of surfactants at the air J.S water interface. Adv. J. Colloid Interface Sci., 85(2000) 103-144.
[30]  L.B.L. Lim, N. Priyantha, C.H. Ing, M.K. Dahri, D.T.B. Tennakoon, T. Zehra, M. Suklueng, Artocarpus odoratissimus skin as a potential low-cost biosorbent for the removal of methylene blue and methyl violet 2B, Desalin. Water Treat., 53(2013) 964-975.
[31]  Y.S. Al-Degs, MI. El-Barghouthi, AH. El-Sheikh, GM. Walker, Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments 77(2008) 16-23.
[32]  M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Application of Casuarina quisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution. Alexandria Engineering Journal , 54(2015) 1253-1263
[33]  M.M. Abd El- Latif, A.M. Ibrahim, Adsorption, kinetic and equilibrium studies on removal of basic dye from aqueous solutions using hydrolyzed Oak sawdust. Desalin. Water Treat., 6(2009) 252-268.
[34]  S. Kazemi, P. Biparva,  E. Ashtiani, Cerastoderma lamarcki shell as a natural, low cost and new adsorbent to removal of dye pollutant from aqueous solutions: Equilibrium and kinetic studies. Ecol. Eng., 88(2016) 82-89.
[35]  Y.Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu, Z.Wu, Dye adsorption by resins: effect of ionic strength on hydrophobic and electrostatic interactions. Chem. Eng. J., 228(2013) 392-397.
[36]  M.K. Dahri, M.R.R. Kooh, L.B.L. Lim, Water remediation using low cost adsorbent walnut shell for removal of malachite green: equilibrium, kinetics, thermodynamic and regeneration studies, J. Environ. Chem. Eng.,2(2014), 1434-1444.
[37]  M. Rathod, K. Mody, S. Basha, Efficient removal of phosphate from aqueous solutions by red seaweed, Kappaphycus alverezii. Journal of Cleaner Production, 84(2014) 484-493.
[38]  Ö. Dülger, F. Turak, K. Turhan, M. Özgür. Sumac Leaves as a Novel Low-Cost Adsorbent for Removal of Basic Dye from Aqueous Solution. Hindawi Publishing Corporation, Analytical Chemistry, 2013 (2013)9.
[39]  S. Sener, Use of solid wastes of the soda ash plant as an adsorbent for the removal of anionic dyes: Equilibrium and kinetic studies. Chem. Eng. J., 138(2008) 207-214.
[40]  N. Dizge, C. Aydiner, E. Demirbas, M. Kobya, S. Kara, Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies. J. Hazard. Mater., 150(2008) 737-746.
[41]  H. Mittal, SB. Mishra, Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B. Carbohydr. Polym., 101(2014) 1255-1264.
[42]  M.N. Idris, M.A. Ahmad, Adsorption equilibrium of malachite green dye onto rubber seed coat based activated carbon. Int. J. Basic App. Sci.  11(2011) 38-43.
[43]  Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40(1918) 1361-1368.
[44]  H. Freundlich, Adsorption in solution. Phys. Chem. Soc. 40(1906) 1361-1368.
[45]  M.J. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physiochem., 2(1940) 217-222.
[46]  M.M. Dubinin, L.V. Radushkevich, Equation of the characteristic curve of activated charcoal. Chem Zent., 1(1947) 875-889.
[47]  A.P. Meneghel, A.C.J. Gonçalves, F.Rubio, D.C. Dragunski, C.A. Lindino, L. Strey, Biosorption of cadmium from water using moringa (Moringa oleifera Lam.) seeds.  Water Air Soil Pollut., 224(2013) 1383-1396.
[48]  G. Annadurai, RS. Juang, D.J. Lee, Use of cellulose based wastes for adsorption of dyes from aqueous solutions. J. Hazard. Mater. 92(2002)263-274.
[49]  T. Zehra, N. Priyantha, L.B.L. Lim, Removal of crystal violet dye from aqueous solution using yeast-treated peat as adsorbent: thermodynamics, kinetics, and equilibrium studies. Environ. Earth. Sci., 75(2016) 375.
[50]  H. Ali, S.K. Muhammad, Biosorption of crystal violet from water on leaf biomass of Calotropis procera. J. Environ. Sci. Technol., 1(2008) 143-150.
[51]  B.K. Suyamboo, R.S. Perumal, Equilibrium, thermodynamic and kinetic studies on adsorption of a basic dye by Citrullus lanatus rind. Iran. J. Energy Environ. 3(2012) 23-24.
[52]  S. Hamidzadeh, M. Torabbeigi, SJ. Shahtaheri, Removal of crystal violet from water by magnetically modified activated carbon and nanomagnetic iron oxide. J. Environ. Health Sci. Eng., 1(2015) 8-15.
[53]  M.A. Shouman, S.A. Khedr, A.A. Attia, Basic Dye Adsorption on low cost biopolymer: kinetic and equilibrium studies. J. App. Chem., 2(2012) 27-36.
[54]  M.R. Kulkarni, T. Revanth, A. Acharya, P. Bhat. Removal of Crystal Violet dye from aqueous solution using water hyacinth: Equilibrium, kinetics and thermodynamics study. Resour. Efficient Technol., 3(2017) 71-77.
[55]  M.J. Jaycock, GD. Parfitt, Chemistry of Interfaces, Ellis Horwood Ltd., Onichester, 1981.