Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor

Document Type : Research Article


1 Department of Science, Payame Noor University, P. O. Box: 19395-4697 Tehran, Iran

2 Young Researchers and Elite club, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran

3 Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Ir


In this study, the various properties including the stability energies, structural and electronic aspects of the hydrazine (N2H4), carbon monoxide (CO) water (H2O) and ammonia (NH3) molecules adsorptions on the top of the boron nitride nanoparticles (BNn) were studied through the Minnesota Functionals computations, DFT/M06-2X. The calculations clarifies that the most stable adsorption configurations are those in which the oxygen, carbon, oxygen and nitrogen atoms of CO2, CO, H2O and NH3 are closed to the boron atom of the nanoparticle, respectively. The absorption energies were obtained about -0.14, -0.15, -0.87 and -1.54 eV for abosorption of CO2, CO, H2O and NH3 gasses. The geometry optimizations, energy calculations and NBO charge transfer were used to evaluate the sensing ability of BNn for different analytes. The computed density of states (DOS) clarifies that a strong orbital hybridization take place between CO2, CO, H2O and NH3 and BNn in adsorption process. Finally, it is concluded that the BNn nanoparticle has greater response selectivity toward NH3 compared to CO, CO2 and H2O

Graphical Abstract

Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor


[1] I. Torkpoor, M. Heidari Nezhad Janjanpour, N. Salehi, F. Gharibzadeh, L. Edjlali, Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study. Chem. Rev. Lett., 1 (2018) 2-8.
[2] F. Gharibzadeh, S. Gohari, K. Nejati, B. Hashemzadeh, S. Mohammadiyan, The Be atom doping: An effective way to improve the Li-atom adsorption in boron rich nanoflake of B24. Chem. Rev. Lett., 1 (2018) 16-22.
[3] S. HaiJun, Thermal-conductivity and tensile-properties of BN, SiC and Ge nanotubes. Comp. Mater. Sci., 47 (2009) 220–224.
[4] D. Golberg, Y. Bando, Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 73 (1998) 2441–2443.
[5] H. Omidvar, S. Goodarzi, A. Seif, A.R. Azadmehr, Influence of anodization parameters on the morphology of TiO2 nanotube arrays. Superlattice. Microst. 50 (2011) 26–39.
[6] S.K. Jain, P. Srivastava Electronic and optical properties of ultrathin single walled boron nanotubes – An ab initio study. Comp. Mater. Sci. 50 (2011) 3038–3042.
[7] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, J. Mol. Model. 18 (2012) 2653-2658.
[8] G. Seifert, E. Hernandez, Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 318 (2000) 355–360.
[9] H.S. Wu, F.Q. Zhang, X.H. Xu, C.J. Zhang, H. Jiao, Geometric and Energetic Aspects of Aluminum Nitride Cages. J. Phys. Chem. A., 107 (2003) 204–209.
[10] Y.R. Hacohen, E. Grunbaum, R. Tenne, J.L. Hutchison, Cage structures and nanotubes of NiCl2, Nature., 395 (1998) 336–337.
[11] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-rate, gas-phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science., 267 (1995) 222–225.
[12] C. Balasubramanian, S. Belluci, P. Castrucci, M.D. Crescenzi, S.V. Bhoraskar, Chem. Phys. Lett. 383 (2004) 188–191.
[13] L. Bourgeois, Y. Bando, W.Q. Han, T. Sato, Structure of boron nitride nanoscale cones: Ordered stacking of 240° and 300° Disclinations. Phys. Rev., B 61 (2000) 7686–7691.
[14] D.A. Neumayer, J.G. Ekerdt, Growth of Group III Nitrides. A Review of Precursors and Techniques. Chem. Mater., 8 (1996) 9–25.
[15] W.H. Goh, G. Patriarche, P.L. Bonanno, S. Gautier, T. Moudakir, M. Abid, G. Orsal, A.A. Sirenko, Z.H. Cai, A. Martinez, A. Ramdane, L. Le Gratiet, D. Troadec, A. Soltani, A. Ougazzaden, Structural and optical properties of nanodots, nanowires, and multi-quantum wells of III-nitride grown by MOVPE nano-selective area growth. J. Cryst., Growth 315 (2011) 160–163.
[16] E. Silva Pinto, R. de Paiva, L.C. de Carvalho, H.W.L. Alves, J.L.A. Alves, Theoretical optical parameters for III-nitride semiconductors. Microelectr. J. 34 (2003) 721–724.
[17] N. G.Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Boron Nitride Nanotubes. Science., 269 (1995) 966.
[18] I. Narita, T. Oku, Effects of catalytic metals for synthesis of BN fullerene nanomaterials. Diamond. Relat. Mater., 12 (2003) 1146.
[19] S. Iijima, C. J. Brabec, A.Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys., 104 (1996) 2089.
[20] D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett., 73 (1998) 2441.
[21] D. Golberg, Y. Bando, K. Kurashima, T. Sato, Synthesis and characterization of ropes made of BN multiwalled nanotubes. Scr. Mater., 44 (2001) 1561.
[22] D. B. Zhang, E. Akatyeva, T. Dumitrica, Surface physics, nanoscale physics, low-dimensional systems-Routes to identification of intrinsic twist in helical MoS2 nanotubes by electron diffraction and annular dark-field scanning transmission electron microscopy imaging. Phys, Rev., B 84 (2011) 115431.
[23] T. Oku, A. Nishiwaki, I. Narita, M. Gonda, Formation and structure of B24N24 clusters. Chem. Phys. Lett. 380 (2003) 620-623.
[24] M. Neek-Amal, J. Beheshtian, A. Sadeghi, K. Michel, F.M. Peeters, Boron Nitride Monolayer: A Strain-Tunable Nanosensor. J. Phys. Chem. C., 117 (2013) 13261–13267.
[25] D. Kohl, TOPICAL REVIEW: Function and applications of gas sensors. J. Phys., D34 (2001) R125–R149.
[26] A. Dubbe, Fundamentals of solid state ionic micro gas sensors. Sens. Actuat. B., 88 (2003) 138 –148.
[27] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Miniaturized gas ionization sensors
using carbon nanotubes. Nature., 424 (2003) 171–174.
[28] H. Ullah, K. Ayub, Z. Ullah, M. Hanif, R. Nawaz, A.A. Shah, S. Bilal, Theoretical insight of polypyrrole ammonia gas sensor. Synth. Met. 172 (2013) 14–20.
[29] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Gaussian Inc., Wallingford, CT, (2009).
[30] S. Kozuch, J.M.L. Martin, Halogen bonds: Benchmarks and theoretical analysis. J. Chem. Theor. Comput. 9 (2013) 1918-1931.
[31] M.D. Esrafili, R. Nurazar, Potential of C-doped boron nitride fullerene as a catalyst for methanol dehydrogenation. Comput. Mater. Sci. 92 (2014) 172-177.
[32] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system. J. Comput. Chem., 14 (1993) 1347–1363.
[33] F. Weinhold, C.R. Landis, Discovering Chemistry With Natural Bond Orbitals, John Wiley & Sons, (2012).
[34] Z. Jin, Y. Su, Y. Duan, Development of a polyaniline-based optical ammonia sensor. Sens. Actuat. B., 72 (2001) 75–79.
[35] N. O’Boyle, A. Tenderholt and K. Langner, cclib: A library for package independent computational chemistry algorithms. J. Comput. Chem. 29 (2008) 839–845.
[36] Javad Beheshtian, Zargham Bagheri, Mohammad Kamfiroozi, Ali Ahmadi, Toxic CO detection by B12N12 nanocluster. Microelectr. J., 42 (2011) 1400–1403.
[37] Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16 (2010) 1679–1691.
[38] S.S. Li, Semiconductor physical electronics, 2nd edn. Springer, Heidelberg (2006).