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1. Introduction 

The conversion of carbon dioxide (CO2) as an 

abundant, safe, inexpensive, nontoxic, nonflammable, 

and renewable C1 synthon into value-added chemicals, 

such as carbonates, carbamates, esters, carboxylic acids 

and alcohols represents one of the hot topics in the fields 

of green and sustainable chemistry [1-10]. However, due 

to the inert nature of this greenhouse gas, the chemical 

fixation process with high efficiency is still a great 

challenge [11]. 

Arynes (benzynes) are highly strained, unstable, and 

reactive intermediates, which have been extensively 

utilized to the synthesis of a large number of valuable 

carbocyclic and heterocyclic compounds [12-16]. Over 

the past few years, this concept was further expanded by 

developing new multi-component reactions involving 

arynes [17]. Generally, arynes multi-component 

couplings involves the initial addition of nucleophiles to 

in situ generated arynes and subsequent trapping of the 

aryl anion intermediate with electrophiles (Scheme 1). 

Needless to say, the carbon atom of carbon dioxide is 

highly electrophilic due to the attached electronegative 

oxygen atoms and can undergo electrophilic attack by 

various nucleophiles [18]. According to the above 

sentences, CO2 could be utilized as a versatile 

electrophilic coupling partner in the multi-component 

reactions involving arynes. 

Recently, several elegant multi-component coupling 

reactions involving arynes were designed that allow the 

incorporation of CO2 to produce various multi-

functionalized arenes and heteroarenes such as 

benzoxazin-4-ones, anthranilic acids, isocoumarins, 

phthalimides, 2-arylamino benzoates, 2-aminoaryl 

benzoates, and carbamates (Figure 1). To the best of our 

knowledge, a comprehensive review has not appeared 

on CO2 incorporation reactions using arynes in literature 

thus far. In continuation of our recent reviews [11, 19-

29], herein we will try to provide a concise overview of 

the recent advances and developments in this field with 

special emphasis on the mechanistic aspects of the 

reactions. 
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Scheme 1. Three-component coupling reactions involving 

arynes. 
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Arynes are highly reactive and kinetically unstable intermediates, which have 

been extensively utilized in various carbon-carbon and carbon-heteroatom bond 

formation reactions. Multi-component couplings of these intermediates are 

powerful transformations that allow for efficient synthesis of a wide range of 

carbocycles and heterocycles, as well as natural products. On the other hand, 

CO2-fixation reactions are one of the safest and most inexpensive methods for the 

synthesis of various value-added chemicals. Along this line, recently, several 

elegant multi-component reactions involving arynes were designed for the 

incorporation of CO2. This review provides a comprehensive overview of the CO2 

incorporation reactions using arynes, with the emphasis on the mechanistic 

aspects of the reactions. 
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2. Three-component reactions 

The possibility of CO2 incorporation reaction using 

arynes was first realized by Yoshida, Kunai and co-

workers, who synthesized a series of highly substituted 

benzoxazin-4-ones 3 through a metal-free three-

component reaction between 2-(trimethylsilyl)aryl 

triflates 1, imines 2, and CO2 in the presence of 4 equiv. 

of KF/18-crown-6 in THF at 0 oC [30].  The presence of 

KF as a fluoride ion source is crucial to the success of 

the reaction, owing to the generation of required arynes 

by the fluoride induced 1,2-elimination of starting 2-

(trimethylsilyl)aryl triflates under mild reaction 

conditions [31]. Under the optimal conditions, the 

desired six-membered heterocycles were obtained in fair 

to high yields (Scheme 2a). This three-component 

coupling reaction tolerated a range of substituents on the 

arynes and was efficient for the use of different primary 

and secondary alkyl imines. However, tertiary alkyl 

imines and aryl imines failed to afford the expected 

products. According to the authors proposed 

mechanism, the reaction proceeds with nucleophilic 

addition of an imine 2 to in situ generated aryne A 

leading to a zwitterion intermediate B, which undergoes 

nucleophilic addition to CO2 followed by intramolecular 

cyclization to give the target product 3 (Scheme 2b). 

The results showed that electronic and steric effects of 

the substituents on the arynes greatly affected the 

regioselectivity of reactions. For example, 3-methoxy-

benzyne, underwent nucleophilic attack by the imine at 

the meta position of the methoxy moiety to afford the 5-

methoxybenzoxazin-4-one, exclusively. However, In the 

case of 3-methyl-benzyne, the steric effect would be in 

conflict with an electron-donating inductive effect of the 

methyl moiety, leading to the production of a mixture of 

two possible products (Scheme 3).  
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Fig. 1 CO2 incorporation reactions using arynes. 
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Scheme 2. (a) Reaction of 2-(trimethylsilyl)aryl triflates 1 

with imines 2 under a CO2 atmosphere; (b) Mechanism that 

accounts for the formation of 3. 

 

  Thus, under the above-mentioned standard 

conditions, three-component coupling reaction of CO2, 

2-(trimethylsilyl)aryl triflates 4, and secondary amines 5 

furnished the desired anthranilic acids 6 in yields 

ranging from 7 to 90% (Scheme 4). The results 

demonstrated that acyclic secondary amines afforded 

better yields compared to the cyclic amines. For cyclic 

amines, 
OMe

Nu
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Nu
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Scheme 3. Influence of the electronic and steric factors on the 

regioselectivity of the reaction. 

the decreasing order of reactivity is azepane> 

piperidine>> pyrrolidine. Just like previous work, the 

regioselectivity of reaction was heavily dependent to the 
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electronic and steric characteristics of the substituents 

on the arynes. The authors proposed that the reaction 

proceeds via the formation of a 1,3-zwitterionic species 

A between an aryne and an amine, which was quenched 

using CO2 to afford the expected product. 

In 2014, Kondo's research team showed that the 

treatment of 2-chlorophenyltrimethylsilane 7 with CO2 

(1 atm) in the presence of a catalytic amount of P5Cl and 

2 equiv. of CsF as a fluoride ion source afforded 40% 

yield of unexpected xanthone 8 (Scheme 5) [33]. On the 

basis of the literature, the authors proposed a mechanism 

(Scheme 6) that involves the initial formation of 

benzyne A and carboxylate B intermediates through the 

1,2-elimination and carboxylation of 2-

chlorophenyltrimethylsilane 7, respectively, which 

undergo combination reaction to form intermediate C. 

Subsequently, intramolecular addition of aryl anion of C 

to carbonyl group affords intermediate D. Next, 

rearrangement of this intermediate leads to the 

phenoxide intermediate E. Finally, intramolecular 

nucleophilic aromatic substitution of E gives the final 

product. 
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Inspired by these works, the group of Kobayashi 

presented one of the most striking examples of the 

synthesis of isocoumarins 11 via a copper-catalyzed 

three-component coupling reaction involving 2-

(trimethylsilyl)aryl triflates 9, terminal alkynes 10, and 

carbon dioxide (Scheme 7) [34]. Various copper 

catalysts, bases, and solvents were carefully tested in 

order to optimize the reaction conditions and the 

combination of [(IPr)CuCl]/Cs2CO3/CsF as a catalytic 

system in binary solvent MeCN/THF with ratio 1:1 

proved most effective. Various 

aryl/heteroaryl/vinyl/alkyl-substituted terminal alkynes 

and functionalized 2-(trimethylsilyl)aryl triflates were 

used to establish the general applicability of the method. 

Under optimized conditions, the corresponding 

isocoumarins were obtained in moderate to high yields. 

A gram-scalereaction was also successfully reported. 

However, when unsymmetrical aryne precursors were 

used, a mixture of two possible products were obtained 

demonstrating poor regioselectivity of the reaction. The 

authors proposed a mechanism in accordance with 

previous reports and their findings and this is 

represented in Scheme 8. The reaction starts with the 

deprotonation of terminal alkyne 10 by NHC–copper 

hydroxide, leading to the formation of copper acetylide 

A. Concurrently, the fluoride-induced silyl elimination 

of 2-(trimethylsilyl)aryl triflate 9 yields ortho-benzyne 

B. Its reaction with organometallic A forms the ortho-

alkynyl copper complex C. Next, the nucleophilic attack 

of this intermediate to the carbon atom in CO2 leads to 

copper carboxylate D, which undergoes a 6-endo-dig 

cyclization to form endocyclic copper heterocycle E. 

Finally, transmetalation between intermediate E and the 

cesium salt affords intermediate F that under the 

reaction condition converts to the expected product 11. 
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arynes 9, terminal alkynes 10, and CO2. 

 

In 2014, Kaicharla, Thangaraj, and Biju showed that 

phthalimide derivatives 14 were formed via three-

component reactions of 2-(trimethylsilyl)aryl triflates 

12, isocyanides 13, and CO2 employing CsF as a F- 

source under transition-metal-free condition at 30 oC 

[35]. This methodology resulted in N-substituted 

phthalimides in moderate to good yields and tolerated a 

series of sensitive functional groups, such as fluoro and 

ether functionalities (Scheme 9). Interestingly, when 

CO2 was replaced with H2O, the corresponding 

benzamide derivatives 15 were obtained in yields 

ranging from 26 to 92%. The author proposed 
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mechanistic course for these reactions is depicted in 

Scheme 10 and involves the initial formation of 1,3-

zwitterionic intermediate B via the nucleophile attack of 

the isocyanide 13 on the in situ generated aryne A, 

which undergoes a [3+2] cycloaddition with CO2 to 

produce imino isobenzofuran C. Finally, a fluoride 

induced rearrangement of this intermediate leads to the 

observed pthalimide 14 through the acylfluoride 

intermediate D. However, in the presence of H2O, the 

intermediate B gets protonated and the hydroxyl anion 

attacks the iminium leading to imine intermediate E that 

after a 1,3 hydrogen shift affords the benzamide product 

15. 

In a closely related investigation, the group of Wang-

Ji found that treatment of functionalized 2-

(trimethylsilyl)aryl triflates 16 with aromatic 

isocyanides 17 under the CO2 atmosphere (1 atm) in the 

presence of 1.5 equiv. of KF/18-crown-6 in THF 

produced the corresponding phthalimides 18 in 

moderate yields (Scheme 11) [36]. In this study, the 

authors found some limitations in their methodology 

when they attempted to react aliphatic isocyanides. In 

these cases, no phthalimide product was observed. In 

addition, aromatic isocyanides a strongly electron-

withdrawing substituent (e.g., NO2) also failed to form 

the desired product. 

Recently, Biju and co-workers developed an elegant 

and efficient substrate-controlled switchable three-

component reaction involving arynes, aromatic tertiary 

amines, and CO2 [37]. This transition-metal-free 

coupling afforded 2-arylamino benzoates 21 in moderate 

to almost quantitative yields via the treatment of 2-

(trimethylsilyl)aryl triflates 19 with electron-rich/-

neutral aromatic tertiary amines 20 under CO2 

atmosphere employing KF/18-crown-6 combination as a 

desilylation system. The reaction showed good 

functional group tolerance, including fluoro, bromo, 

ether and ester functionalities. This made possible the 

further elaboration of products. Interestingly, when the 

same reaction conditions were applied to the electron-

deficient amines, the 2-aminoaryl benzoate products 22 

were exclusively obtained (Scheme 12). The 

mechanistic course of this interesting reaction sequence 

is shown in Scheme 13, and involves the initial 

formation of 1,3-zwitterionic intermediate B from the 

addition of aromatic tertiary amines to arynes A. The 

reaction of this intermediate with CO2 gives the key 

intermediate C, which with electron-rich/-neutral 

amines, undergoes an alkyl group transfer to produce 2-

arylamino benzoates 21. However, in the case of tertiary 

amines having an electron-poor group attached, the 

intermediate C undergoes an intramolecular 

nucleophilic aromatic substitution reaction to yield the 

expected 2-aminoaryl benzoates 22 via the σ-complex 

D. 
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Scheme 8. Mechanism that accounts for the formation of isocoumarins 11. 
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Scheme 10. Proposed mechanism for formation of 

phthalimides 14 and benzamides 15. 
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3. Four-component reactions 

An interesting metal- and fluoride-free four-component 

coupling reaction for the synthesis of biologically and 

synthetically important carbamate derivatives 26 from 

3-triflyloxybenzynes 23, amines 24, cyclic ethers 25 and 

CO2 in which one new C–N bond, one new C–H bond 

and two C–O bonds are formed, was developed by 

Xiong et al. in 2018 (Scheme 14) [38]. 
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Scheme 11. Wang's synthesis of phthalimides 18. 

Among the various bases like Cs2CO3, K2CO3, CsF, 

KF, TBAI, TBAF, TBAC; TBAI was the most efficient 

for the transformation. The reaction was carried out 

under solvent-free conditions and atmospheric pressure 

of CO2 at room temperature and provided the expected 

product in moderate to good yield. Interestingly, the 

reaction was equally effective for both the primary and 

secondary amines. However, in the cases of 

unsymmetrical cyclic ethers and 3-triflyloxybenzynes, 

regioisomeric mixture of tow possible products were 

obtained. It is interesting to note that cyclic ether 

playing a dual role in this reaction; the reactant and the 

solvent. Beside moderate to high yields, mild reaction 

condition and easy available starting materials as well as 

scalability can be considered as the advantages of this 

atom economy synthetic approach. The mechanism 

proposed to explain this coupling reaction is shown in 

Scheme 15 and starts with the formation of 3-

triflyloxybenzyne A from 23 with the assistance of 

TBAI, and then nucleophilic addition of cyclic ether 25 

to the triple bond of A to give zwitterion intermediate B, 

which undergoes protonation by the ammonium cation 

of carbamate C, which is generated in situ from amine 

24 and CO2, to produce oxonium intermediate D. 

Finally, the nucleophilic attack of the carbamate anion C 

on intermediate D affords the observed products 26. To 

the best of our knowledge, this is the only example of 

four-component reactions involving arenes and CO2 

reported so far. 
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Scheme 12. Transition-metal-free three-component coupling of arynes, aromatic tertiary amines, and CO2 developed by Biju. 
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4. Conclusions 

 

The efficient utilization of CO2 as an abundant, 

inexpensive, nontoxic, nonflammable, and renewable 

C1-building block in organic synthesis has attracted 

significant attention in view of sustainable chemistry 

and green chemistry concepts. However, this is a great 

challenge, owing to its inert nature and low reactivity. 

Arynes are a kind of highly unstable and reactive 

intermediates, which have been widely used in various 

carbon-carbon formation and carbon-heteroatom bond 

formation reactions. As illustrated, over the last 12 

years, several interesting multi-component coupling 

reactions involving arynes were designed that allow the 

efficient incorporation of CO2 to produce various value-

added chemicals (e.g. benzoxazin-4-ones, anthranilic 

acids, isocoumarins, phthalimides, 2-arylamino 

benzoates, 2-aminoaryl benzoates, and carbamates). 

Interestingly almost all of the conversion of CO2 

covered in this focus-review could be achieved under 

very mild (atmospheric pressure of CO2 and room 

temperature) and metal-free conditions demonstrating 

the greener feature of the present protocol. However, the 

number of reported examples in this interesting research 

arena is limited and there is still further need to study 

the scope and limitations of this novel protocol for the 

synthesis of arenes and heteroarenes. It is our hope that 

this review will stimulate researchers to further research 

and study in this really interesting research field. 
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