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1. Introduction 

 
The utilization of phosphonium salts in organic 

synthesis has gained recognition due to the generation 
of phosphorus ylides in situ, which serve as 
nucleophiles in Wittig reactions [1,2]. Notably, 
phosphonium salts incorporating a dipalladate(II) 
moiety have demonstrated efficacy as versatile and 
sustainable heterogeneous catalysts in diverse variation 
reactions, encompassing amination of aryl halides, 
Heck and Stille and other coupling reactions,  as well 
as oxidation and polymerization reactions [1,3-12]. As 
with other catalytic reactions, building upon the 
catalytic advancements observed in these reactions, 
this study explores the use of novel phosphonium salts 
containing hexabromodipalladate(II) as catalysts in 
Heck and Suzuki cross-coupling reactions. 
Triphenylphosphine is employed to synthesize this 
catalyst, chosen for its economic efficiency, ready 
availability, and stability in air [13-19]. 
Triphenylphosphine and its derivatives readily engage 
as nucleophiles with alkyl/aryl halides, yielding 

phosphonium salts characterized by high thermal 
stability [20]. The diverse applications of 
phosphonium salts underscore their significance, 
ranging from the preparation of phosphorus ylides 
crucial for Wittig reactions in alkene synthesis [21-23] 
to their use as anti-cancer agents for diagnosing and 
treating tumor cells, playing a role in biological 
research for targeting, and serving as pharmacological 
agents with antimicrobial properties against both gram-
negative and gram-positive bacteria [24-26]. 

In this present study, a novel phosphonium 
compound is employed as a catalyst for facilitating 
carbon-carbon bond formation through the Suzuki 
cross-coupling reaction, aiming to achieve biphenyl 
derivatives. Biphenyl derivatives constitute a diverse 
category of compounds renowned for their wide array 
of biological activities, encompassing antimicrobial, 
antifungal, anti-proliferative, anti-diabetic, 
immunosuppressive, analgesic, and anti-inflammatory 
properties. Additionally, they serve as crucial 
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precursors in the synthesis of oligo(p-phenylene)s, 
contributing to research on artificial ion channels [27-
29]. 

 

2. Experimental  

 
2.1. Synthesis of catalyst 

2.1.1 Preparation of phosphonium salt (ligand) 

A benzene solution (20 mL) containing 
triphenylphosphine (PPh3) (1.30 g, 5 mmol) was 
introduced to a benzene solution (20 mL) of ethyl 2-
bromoacetate (0.55 ml, 5 mmol) in a 250 mL round 
bottom flask, after stirring for two hours at room 
temperature resulting precipitation of the 
corresponding phosphonium salt, manifesting as a 
white solid., the mixture was filtered. Subsequent 
washing with diethyl ether (10 mL) and drying yielded 
a solid with an isolated yield of 1.50 g (70%). The 
melting point was recorded as 276 °C. Infrared 
spectroscopy (IR) (υ, cm-1) exhibited peaks at 1430 
(CH2-P) and 1729 (C=O). Proton nuclear magnetic 
resonance (1H NMR) analysis (400 MHz, CDCl3) 
revealed signals at δ= 0.937 (t, 3H, CH3, J=15 Hz); 

4.013 (q, 2H, CH2O, J=27 Hz); 5.465 (d, 2H, CH2P, 
J=57 Hz); and a multiplet in the range of 7.450-7.880 
(m, 15H, Ph). Carbon-13{1H} NMR (75.45 MHz, 
DMSO) exhibited signals at δ= 13.98 (s, CH3); 30.13 

(d, CH2P, J=89 Hz); 62.70 (s, CH2O); 165.15 (s, C=O); 

and a range of 118-135 (ph). Phosphorus-31{1H} 
NMR (121.50 MHz, DMSO) showed a signal at δ= 
20.49 ppm. 

 

 

2.1.2 Synthesis of palladium complex (catalyst) 
 

Palladium(II) chloride (0.016 g, 1 mmol) and 
sodium chloride (0.04 g, 1 mmol) were combined and 
placed in 10 ml of methanol as the solvent, stirred for 
18 hours at room temperature. The resulting clear 
solution, Na2Pd2Cl6, underwent treatment with ligand 1 
(0.83 g, 2 mmol) at room temperature for 6 hours, 
yielding 2 as a brown solid. Purification of the 
obtained solid involved filtration, washing with 
methanol and diethyl ether, followed by dissolution in 
dichloromethane. The yield was 0.72 g (60%), with a 
melting point of 221 °C. IR (υ, cm-1): 1436 (CH2-P), 
1739 (C=O). 1H NMR (400 MHz, CDCl3): δ= 0.950 (t, 
3H, CH3, J=25 Hz); 4.025 (q, 2H, CH2, J=28 Hz); 

5.300 (d, 2H, CH2P, J=58 Hz); 7.465-7.891 (m, 15H, 
Ph). 13C{1H} NMR (75.45 MHz, DMSO): δ= 13.97 (s, 
CH3); 30.31 (d, CH2P, J=88 Hz); 62.80 (s, CH2O); 
165.10 (s, C=O); 117-135 (ph). 31P{1H} NMR (121.50 
MHz, DMSO): δ= 20.47. Anal. Calc. for C22H22O2P, 

0.5(Cl4Br2Pd2): C: 21.80; H: 1.81. Found: C: 22.06; H: 

1.75. 
 

2.1.3. General procedure for Heck cross-coupling 

reaction 

A mixture of aryl halide (1 mmol), n-butyl acrylate 
(1.2 mmol), potassium carbonate (2 mmol), 0.005 g of 
catalyst compound 2, and 4 mL of PEG as the solvent 
was subjected to heating at 120 °C using an oil bath. 
The advancement of the reaction was tracked through 
TLC (hexane/EtOAc, 80:20). Once the reaction 
reached completion, the mixture was diluted with 
diethyl ether (10 mL) and water (10 mL), followed by 
catalyst regeneration. After rinsing with brine (10 mL), 
the organic layer underwent drying over Na2SO4 and 
concentration under reduced pressure. The residue was 
purified through recrystallization from water and 
ethanol. Ethyl acetate (3×10 mL) was employed for 
product extraction. The combined ethyl acetate extracts 
were dried over anhydrous sodium sulfate (1.5 g), 
filtered, and then evaporated to obtain the pure 
product. Characterization of the products was achieved 
by comparing their spectral (1H-NMR and IR) and 
physical data with those of authentic samples. 

 
2.1.4. General procedure for Suzuki cross-coupling 

reaction 
 

A mixture of of phenylboronic acid (1.2 mmol), 
potassium carbonate (2 mmol), aryl halide (1 mmol), 4 
mL of PEG as the solvent, and 0.005 g of catalyst 
compound 2 was subjected to heating at 80 °C using an 
oil bath. The progression of the reaction was 
monitored via TLC (n-hexane/EtOAc, 80:20). Upon 
completion of the reaction, the mixture was diluted 
with both water (10 mL) and diethyl ether (10 mL), 
and the catalyst was regenerated. Following washing 
with brine (10 mL), the organic layer underwent 
drying over Na2SO4 and concentration under reduced 
pressure. The residue underwent purification through 
recrystallization from water and ethanol. Ethyl acetate 
(3×10 mL) was utilized for product extraction. The 
combined ethyl acetate extracts were dried over 
anhydrous sodium sulfate (1.5 g), filtered, and then 
evaporated to obtain the pure product. Characterization 
of the products was accomplished by comparing their 
spectral (1H-NMR and IR) and physical data with 
those of authentic samples. 

 
2.1.6. General procedure for recovery of the 

catalyst 
After successfully conducting and verifying the 

advancement of both catalytic reactions using TLC, the 
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reaction mixture was permitted to reach room 
temperature. Subsequently, water (5 mL) and the 

organic phase of the reaction (diethyl ether, 5 mL) were 
added, and the resulting mixture underwent filtration to 
separate the catalyst. The catalyst, after drying at 100 
°C, was promptly utilized for subsequent reactions. 

 

3.Results and discussion 

 
3.1. Synthesis of the catalyst 
Initially, the synthesis of (2-ethoxy-2-oxoethyl) 

triphenylphosphonium bromide (1) was carried out by 
treating ethyl 2-bromoacetate with PPh3 in benzene as 
the solvent. The resultant product was a phosphonium 
salt, presenting as an exclusive white solid (Scheme 1). 
Subsequently, the obtained phosphonium bromide 
underwent a reaction with sodium 
hexachloropalladate(II) in a molar ratio of 2:1 in 
methanol at room temperature for 6 hours, resulting in 
the formation of (2) as a brown solid, as depicted in 
Scheme 2. The purity of the product was confirmed by 
the presence of a sharp and singular peak at δ=20.47 
ppm in the 31P NMR spectrum. Figure 1 shows the 1H 
NMR of the catalyst. Based on previously reported work 
as well as the weaker bridging bond in [Pd2Cl6]

2-, 
reaction with phosphonium bromide leads to 
[Pd2Br2Cl4]

2-, where the bridging bond is a bromo 
bridge [30-32]. 

 

 
 
Scheme 1. Synthesis of (2-ethoxy-2-

oxoethyl)triphenylphosphonium bromide (1) 
 

3.2. Catalytic study  
3.2.1. Suzuki cross-coupling reaction 

 
The investigation focused on the catalytic impact of 

the synthesized compound (2) in the cross-coupling 
reaction of phenylboronic acid with aryl halides. This 
reaction was chosen as it exhibits no progress in the 
absence of a catalyst. To identify optimal reaction 

conditions, the influence of temperature, solvent, and 
catalyst quantity on reaction durations and yields was 
systematically explored. This exploration involved 
studying the reaction involving potassium carbonate, 
phenylboronic acid, and iodobenzene in ethanol at 80˚C. 
The results are detailed in Table 1. 
 
Table 1. Optimization of the amount of compound 2 for 
Suzuki cross-coupling reaction. 

Entry 
Compound 2 
(mg) 

Time 
(min) 

Yield (%) 

1 0.000 20 0 
2 0.003 20 65 
3 0.005 20 75 
4 0.007 20 82 
5 0.010 20 86 
Reaction conditions: iodobenzene: 1 mmol, phenyl boronic 
acid: 1.2 mmol, K2CO3: 2 mmol, 4 mL PEG, at 80 ˚C 

 
Table 1 illustrates that the catalyst-free reaction was 

conducted to showcase the genuine efficacy of the 
heterogeneous catalyst. Notably, biphenyl could not be 
produced in the absence of the catalyst. Before 
optimizing the base and temperature, the selection of an 
appropriate solvent took precedence. Solvents such as 
N,N-dimethylformamide, ethanol, polyethylene glycol 
(PEG), ethyl acetate, and isopropanol were assessed for 
this purpose, and the outcomes are presented in Table 2. 
Polyethylene glycol was ultimately chosen as the 
preferred solvent not only due to its phasetranfer 
property and cost-effectiveness compared to other 
organic solvents and its environmentally friendly nature 
but also due to its actions as a phase-transfer agent and 
support. Polar solvents such can solvate the reactants 
and the catalyst, leading to improved reactivity and 
selectivity. Additionally, polar solvents can stabilize the 
intermediate palladium complex formed during the 
reaction, leading to higher yields. However, nonpolar 
solvents may not be able to solvate the reactants and 
catalyst as effectively as polar solvents, which can lead 
to lower reaction rates and yields. 
Subsequently, the effect of temperature on the reaction 
rate was explored by conducting the reaction involving 
potassium carbonate, phenylboronic acid, and 
iodobenzene in the presence of the optimal catalyst 
quantity (see Table 3). 

Notably, the investigation revealed that, at room 
temperature, the reaction did not progress, but it 
consistently yielded the product in high abundance 
(98%). 
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Fig. 1. 
1H NMR of the palladium catalyst (compound 

 

 

 
 

.. Scheme 2. Synthesis of catalyst (2). 

 
 
Table 2. Optimization of solvent in Suzuki cross-coupling 
reaction. 

Entry solvent 
Time 
(min) 

Yield 
(%) 

1 Ethyl acetate 20 80 

2 
N,N-
Dimethylformamide 

20 70 

3 PEG 20 98 
4 Ethanol 20 90 
5 iso-propanol 20 80 
6 Dimethylsulfoxide 20 75 
Reaction conditions: iodobenzene: 1 mmol, phenyl boronic 
acid: 1.2 mmol, K2CO3: 2 mmol, at 80 ˚C, catalyst: 0.006 g. 
 

 
Table 3. The effect of temperature on Suzuki cross-coupling 
reaction. 

Temperature (˚C) Time (min) Yield (%) 
75 20 82 
80 20 98 
95 20 65 
105 20 45 

Reaction conditions: iodobenzene: 1 mmol, phenyl boronic 
acid: 1.2 mmol, K2CO3: 2 mmol, catalyst: 0.006 g. 
 

The research then proceeded to optimize the base. 
Table 4 (see below) suggests that potassium carbonate 
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emerged as the most effective base among the options 
considered. K2CO3 is a mild base that can effectively 
deprotonate aryl halides without causing excessive side 
reactions. It is also relatively inexpensive and easy to 
handle, making it a practical choice for large-scale 
reactions. Additionally, K2CO3 is soluble in PEG-400. 
Na2CO3 is also a mild base, but it can be less effective 
than K2CO3 in this certain case. KOH and NaOH can be 
effective in promoting the reaction, but they can also 
lead to increased side reactions. In summary, K2CO3 is 
selected as the optimal base due to its mildness, 
effectiveness, and practicality. 
 
Table 4. Optimization of base in Suzuki cross-coupling 
reaction 

Base Time 
(min) 

Yield (%) 

Potassium carbonate (K2CO3) 20 98 
Potassium hydroxide (KOH) 20 94 
Sodium carbonate (Na2CO3) 20 96 
Sodium hydrogen carbonate 
(NaHCO3) 

20 
92 

Sodium hydroxide (NaOH) 20 95 
Reaction conditions: iodobenzene: 1 mmol, phenyl boronic 
acid: 1.2 mmol, base: 2 mmol, at 80 ˚C, catalyst: 0.006 g. 

 

The most favorable outcome was achieved using a 
1:1:2:2 ratio of aryl halides, phenylboronic acid, 
potassium carbonate, and 0.006 g of the catalyst at 80 
˚C. To assess the reaction's generality, various aryl 
halides with both electron-donating and electron-
withdrawing groups were employed (Scheme 3). The 
corresponding products were consistently obtained in 
good to excellent yields across different cases (see Table 
5). The effect of electron-donating and electron-drawing 
groups on different positions of the aryl ring on the 
yield and reaction time was studied. Electron-donating 
groups show less reactive in comparison to electron-
withdrawing groups. Detailed descriptions of the 
products were provided through spectral methods, 
including 1H-NMR, 13C-NMR, and IR analyses. 

 
 
 
 
 
 
 

  

 
   

Scheme 3. Application of the palladium catalyst (2) in the Suzuki reaction. 
 

 

Table 5. Suzuki cross-coupling for the synthesis of biaryls from aryl halides. 
 

Entry Aryl halide Product Yielda (%) Time (min) M. p. (˚C) 

1 

I

 

Ph

 

95 8 61-63 [32] 

2 

I

CH3  

Ph

CH3  

98 10 43-44 [33]  
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3 

  

97 15 
Light yellow liquid 

[34] 

4 

I

OCH3  

Ph

OCH3  

82 15 82-84 [33] 

5 

  

60 30 Colorless Oil [35] 

6 

Br

 

Ph

 

94 15 62-64 [32] 

7 

Br

OCH3  

Ph

OCH3  

94 25 82-84 [33] 

8 

Br

NO2  

Ph

NO2  

95 10 109-111 [33] 

 

 

a Isolated Yield. 
Reaction conditions: aryl halide: 1 mmol, phenyl boronic acid: 1.2 mmol, K2CO3: 2 mmol, at 80 ˚C, catalyst: 0.006 g. 

 
 

 
3.2.2. Heck cross-coupling reaction 

In the current study, the Heck cross-coupling 
reaction underwent investigation to determine the most 
favourable reaction conditions and assess the catalytic 
effectiveness of compound 2. The impact of catalyst 
quantity, solvent, base, and temperature on reaction 
times and yields was systematically examined. To 
conduct this analysis, a model reaction involving 
iodobenzene, n-butyl acrylate, and potassium carbonate 
in polyethylene glycol at 120˚C was selected, and 
various catalyst amounts were evaluated, as outlined in 
Table 6. 

Table 6. Optimization of the catalyst (2) amount for Heck 
cross-coupling reaction. 

Entry 
Compound 2 
(mg) 

Time 
(min) 

Yield (%) 

1 0.00 20 0 
2 0.003 20 90 
3 0005 20 96 
4 0007 20 96 
Reaction conditions: iodobenzene: 1 mmol, n-butyl acrylate: 
1.2 mmol, K2CO3: 2 mmol, 4 mL PEG, at 120 ˚C. 
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Table 6 clearly demonstrates that the reaction does not 
occur in the absence of the catalyst, highlighting its 
crucial role. The selection of an appropriate solvent was 
prioritized before optimizing other variables. After 
investigating several solvents, polyethylene glycol was 
ultimately chosen, as detailed in Table 7. 
 
 
 
Table 7. Optimization of the solvent in Heck cross-coupling 
reaction. 

Entry solvent 
Time 
(min) 

Yield 
(%) 

1 Ethyl acetate 20 70 

2 
N,N-
Dimethylformamide 

20 88 

3 PEG 20 95 
4 Ethanol 20 80 
5 Dimethylsulfoxide 20 20 
Reaction conditions: iodobenzene: 1 mmol, n-butyl acrylate: 
1.2 mmol, K2CO3: 2 mmol, catalyst: 0.005 g, at 120 ˚C. 

 
The influence of temperature on the reaction rate was 

subsequently investigated, as presented in Table 8. The 
reaction continued effectively at 120 °C and even as the 
temperature increased to 105 °C, the reaction rate 
increased rather than decreased. Therefore, the optimal 
reaction temperature was maintained at 120 °C. 
 
Table 8. The effect of temperature on Heck cross-coupling 
reaction. 

Temperature (˚C) Time (min) Yield (%) 
100 20 82 
110 20 94 
120 20 98 
130 20 90 
140 20 88 
Reaction conditions: iodobenzene: 1 mmol, n-butyl acrylate: 
1.2 mmol, K2CO3: 2 mmol, catalyst: 0005g, PEG. 
 

Base optimization was then carried out, and Table 9 
suggests that potassium carbonate emerged as the most 
suitable base among those considered. 

 
Table 9. Optimization of the base in Heck cross-coupling 
reaction 

Base Time 
(min) 

Yield (%) 

Potassium carbonate (K2CO3) 20 98 
Potassium hydroxide (KOH) 20 92 
Sodium carbonate (Na2CO3) 20 98 
Sodium hydrogen carbonate 
(NaHCO3) 

20 
92 

Sodium hydroxide (NaOH) 20 94 
Reaction conditions: iodobenzene: 1 mmol, n-butyl acrylate: 
1.2 mmol, base: 2 mmol, catalyst: 0005g, at 120 ˚C, PEG. 
 

To assess the generality of the reaction, various aryl 
halide types with both electron-donating and electron-
withdrawing groups were employed, as illustrated in 
Scheme 4. The resulting products consistently exhibited 
good to excellent yields in each case, as detailed in 
Table 10. 
Tables 5 and 10 collectively demonstrate the robust 
performance of the employed catalytic system across 
different substrates when the reaction conditions were 
optimized. 
 
3.3.3. Recovery of the catalyst 

 
The recyclability of catalysts is a crucial factor for 

their practical application in industrial and commercial 
settings. To assess the catalyst's reusability, its activity 
was tested in the Suzuki and Heck reactions over four 
consecutive runs. The separated catalyst demonstrated 
noteworthy reusability and recoverability, as illustrated 
in Fig. 2. 

 
 
 
 
 
 
 

 
 

 Scheme 4. Application of the palladium catalyst (2) in the Heck cross-coupling reactions. 
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Table 10. Heck cross-coupling reaction of various aryl halides with n-butyl acrylate 

Entry Aryl halide Product Yielda (%) Time (min) M. p. (˚C) 

1 

I

  

98 20 
Light yellow 

liquid [34] 

2 

I

CH3  
 

95 40 
Light yellow 

liquid [34] 

3 

  

96 75 
Light yellow 

liquid [36] 

4 

  

40 30 
Light yellow 

liquid [36] 

5 

Br

  

90 150 
Light yellow 

liquid [36] 

6 

Br

OCH3   

60 90 
Light yellow 

liquid [36] 

7 

  

70 110 
Light yellow 

liquid [36] 

a Isolated Yield. 
Reaction conditions: aryl halide: 1 mmol, n-butyl acrylate: 1.2 mmol, K2CO3: 2 mmol, catalyst: 0005g, at 120 ˚C, PEG. 

 
. 

  

 



 

 

Fig. 2. Reuse of the catalyst in Heck (a) and Suzuki cross

 

 
٤  . Conclusion 

 

In this investigation, an innovative phosphonium salt 
containing the [Pd2Cl4Br2]

2- unit proved to be
exceptionally efficient catalyst for the Suzuki cross
coupling reaction. This approach enabled the direct 
production of numerous biaryls with consistently 
impressive yields, ranging from very good to excellent. 
Moreover, compound (2) exhibited signific
prowess in facilitating the Heck cross
reaction. Notably, the initiation of the reaction did not 
necessitate an inert or dry atmosphere. The catalyst 
demonstrated remarkable activity, and its capacity for 
reuse was validated across four consecutive cycles in 
both reactions.  
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