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1. Introduction 

 
      Predicting the chemical thermodynamic properties 

of pure materials and mixtures is a vital matter for 

industrial purposes [1], [2]. Converting scientific data to 

engineered products in the industry requires reliable 

methodologies that could provide necessary data where 

those data are not available [3]. Many efforts were 

taking place to develop models that could predict the 

thermodynamic properties [4]–[6]. Local composition 

models [7], [8], cubic models[9], [10], statistical 

thermodynamics models such as statistical associated 

fluid theory (SAFT) are successful models that are used 

extensively [11]–[13]. Recently, developed models 

based on quantum and statistical mechanics for 

equilibrium thermodynamics such as COSMO-RS have 

also shown good performance [14], [15]. All of these 

cases involve complex calculations with a long 

computational time that may be an obstacle for a 

researcher in the process of conducting applied studies 

in chemistry and chemical engineering. 

     COSMO-SAC model is commonly used for the 

activity coefficient calculation of mixtures. [16] It works 

based on the statistical thermodynamics that gets σ-

profiles from quantum mechanics calculations as input. 

Generally, dmol3 was used for geometry optimization 

and minimization of molecule energy, and evaluation of 

σ-profiles.[17] Also, the COSMO-SAC model provides 

good results for the activity coefficient with a low 

deviation from experimental results. Indeed, it has a 

good reputation and is considered a reliable method in 

the prediction of the activity coefficient of organic 

materiTaals. Also, it has been shown that the COSMO-

SAC thermodynamic properties depends on the 

chemical family rather than the size of the molecule that 

makes it powerful tool for the purpose of this study.[18] 

     Various validated databases in chemistry are 

developed for the military, industrial, pharmaceutical, 

and educational purposes. One of the most reliable 

thermochemical databases is created by the National 
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Institute of Standards and Technology (NIST) that is the 

most reliable database for materials thermochemical 

information [19], [20]. However, some valid datasets are 

also available as open-source physicochemical 

information of materials that are created by different 

research teams, such as the MGCDB84, GMTKN55, 

and Minnesota Database databases [21]–[23] that are the 

result of quantum computing. The FreeSolv dataset was 

published as open-source that contains the free energy 

of the low molecular weight organic molecules 

including different functional groups mainly 

pharmaceutical substances [24]. Generally, it includes 

experimental data combined with quantum 

computational data (DFT) and molecular dynamics that 

make it an appropriate dataset for machine learning 

uses. 

     Machine learning (ML) is an artificial intelligence 

branch that could be used for the prediction of a variable 

with an automated process without the need for explicit 

programming [25]. The ML is based on the data analysis 

that began with access to data and uses it for learning. 

The learning process begins with observations of data to 

find instructions with specific patterns in the data. In 

this respect, the data are divided into two parts: training 

data and test data. There are many different algorithms 

for machine learning, and they are typically categorized 

as supervised learning, unsupervised learning, and semi-

supervised learning [26].  

     Enthalpy of hydration is mainly an essential 

parameter for estimating different thermodynamic and 

chemical engineering variables such as solubility, 

required heat for processing, etc. [27], [28]. Generally, 

measurement of this quantity requires a precise and 

expensive microcalorimeter or it is impossible to 

measure it in the determined conditions due to 

degradation of the material [29], [30]. Prediction of the 

enthalpy of hydration with acceptable accuracy for 

organic materials, especially medicinal products is a 

vital matter that could be used effectively to accelerate 

the engineered processes [31]–[33]. As previously 

mentioned, the time-consuming and complex quantum 

computational methods are limiting factors for industrial 

purposes. In this regard, machine learning can help 

speed up the calculations to obtain the required enthalpy 

of hydration of material with proper initial inputs.  

The FreeSolv dataset includes the free energy of 

hydration for low molecular weight organic molecules 

[24]. There are experimental, DFT calculations, and 

molecular dynamics data including different 

thermodynamic properties and molecular descriptive in 

the FreeSolv [24]. The FreeSolv dataset has been 

merged with a produced COSMO-SAC dataset 

including infinite dilution activity coefficient of the low 

molecular weight organic materials in various solvents 

such as water, ethanol, methanol, benzene, and toluene. 

Different machine learning methods such as support 

vector machine, random forest, and gradient boosting 

decision tree are used to predict the enthalpy of 

hydration.  

 

2. Materials and methods 

2.1. COSMO-SAC model 
 

    The procedures have been implemented with python 

in the Jupyter environment. Different two PCs with 

different configurations have been used to evaluate the 

results, and the results were identical in the two 

configurations which are important for the repeatability 

of the process. Accordingly, the FreeSolv dataset and 

VT2005 σ-profiles dataset has been used as initial 

data.[24], [34] It should be noted that there were 96 

exact matches according to the IUPAC names of the 

materials between the two datasets, and it was a 

limitation of this work. The activity coefficients of 96 

organic materials with different solvents such as 

methanol, ethanol, benzene, toluene, and water in full 

range composition (mole fractions of solute = 0, 0.1, …, 

0.9, 1) at 298.15 K have been calculated by the open-

source benchmark of the COSMO-SAC implemented by 

Bell et al. A detailed information is available in the 

corresponding paper. Also, it is accessible from the 

GitHub repository [35].  

2.2. Machine learning 

2.2.1. Support vector machine regressor 

     The model generated by the support vector machine 

(SVM) classifier depends only on a subset of the 

training data where the cost function for constructing the 

model does not matter to the training data that are 

beyond the margin. Similarly, the model generated by 

SVR depends only on a subset of the training data, 

because the cost function ignores samples whose 

prediction is close to the target. Selecting the 

appropriate kernel for subset tuning will be the main 

issue using this method. In this research, Gaussian, 

sigmoid, and polynomials kernels of SVR have been 

used [36] for prediction of enthalpy of hydration of 

organic materials. 

2.2.2. Random forest regressor 

    Random Forest is a meta-estimator that fits 

classification decision tree sets on different sub-set of 

the dataset and uses averaging to improve forecasting 

accuracy and over-fitting control. Decision trees are a 

non-parametric supervised learning method used for 

classification and regression. Therefore, the random 

forest has been used as a white-box model with simple 

interpretation while the black-box models (for example, 

in an artificial neural network), and interpretation of the 

results may be more difficult. It is possible to validate 

the model using statistical tests, which increases the 

reliability of the model. Also, it has a good performance 

and no major difference will be created even if its 



 
assumptions are partially violated by the actual model 

from which the data is derived [37]. 

2.2.3. Gradient boosting decision tree regression 

(GBDTR) 

    The GBDTR makes a cumulative step-by

and makes it possible to optimize arbitrary distinct cost 

functions. At each step, a regression tree is proportional 

to the negative gradient of the cost function is 

established. The BBDTR is a generalized model of 

boosting to arbitrary distinguishable loss function

the decision tree. It is an accurate and effective method 

that can be used for regression and classification 

problems in various fields such as search space ranking. 

Another advantage of this method is the ability to 

construct a mathematical formula from a regression 

problem, which allows providing a comprehensive 

formula for the regression performed, in which case the 

importance of the properties can also be examined 

2.3. Assessment efficiency of machine learning 

prediction 

In statistics, the mean absolute error (MAE) is a 

measure of the errors between pairwise obser

express a phenomenon. The sample of Y versus X 

include a comparison between the predicted value 

versus the real value of the label that is calculated as 

follows: 

�����, ��� 	 	 ��∑ |�� � ���|������    

The means squared error function has been used to 

evaluate the performance of the machine learning 

method. In statistics, the mean squared error of the 

estimator measures the mean squared error. There is a 

risk function between the estimated values and the 

actual value of the variable that corresponds to the 

expected value of the square error. Information that can 

provide a more accurate estimate, which is calculated as 

follow: 

�����, ��� 	 	 ��∑ ��� � �����������    

Also, the root mean square error is evaluated using 

following relation: 

�����, ��� 	 	��
�∑ ��� � �����������   

(3) 

These three statistical variables are the criteria for the 

assessment of the ML methods accuracy and reliability 

in the prediction. 

3. Results and Discussion 
3.1. COSMO-SAC model for infinite dilution activity 

coefficient  

Basically, the COSMO-SAC model uses the quantum 

mechanics data through a statistical mechanic approach 

to evaluate the thermodynamic properties of a system. 

This aim starts with σ-profiles and continues with a 
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assumptions are partially violated by the actual model 

Gradient boosting decision tree regression 

by-step model 

it possible to optimize arbitrary distinct cost 

functions. At each step, a regression tree is proportional 

to the negative gradient of the cost function is 

established. The BBDTR is a generalized model of 

boosting to arbitrary distinguishable loss functions from 

the decision tree. It is an accurate and effective method 

that can be used for regression and classification 

problems in various fields such as search space ranking. 

Another advantage of this method is the ability to 

from a regression 

problem, which allows providing a comprehensive 

formula for the regression performed, in which case the 

importance of the properties can also be examined [38]. 

Assessment efficiency of machine learning 

In statistics, the mean absolute error (MAE) is a 

measure of the errors between pairwise observations that 

express a phenomenon. The sample of Y versus X 

include a comparison between the predicted value 

versus the real value of the label that is calculated as 

        (1) 

ared error function has been used to 

evaluate the performance of the machine learning 

method. In statistics, the mean squared error of the 

estimator measures the mean squared error. There is a 

risk function between the estimated values and the 

of the variable that corresponds to the 

expected value of the square error. Information that can 

provide a more accurate estimate, which is calculated as 

        (2) 

Also, the root mean square error is evaluated using 

         

the criteria for the 

assessment of the ML methods accuracy and reliability 

SAC model for infinite dilution activity 

SAC model uses the quantum 

a statistical mechanic approach 

to evaluate the thermodynamic properties of a system. 

profiles and continues with a 

series of equation to reach the activity coefficients 

Also, the evaluated activity coefficients could be used 

through the thermodynamic relation to calculate the 

Gibbs free energy. 

The activity coefficient of the organic compounds in 

different solvents has been predicted using the COSMO

SAC model. This model use σ-profiles of the materials 

to evaluate the thermodynamic properties based on the 

statistical thermodynamic relations 

corresponding σ-profiles for the studied materials are 

available in VT2005 dataset [24], [34]

activity coefficient data for binary mixtures of thiophene 

in the studied solvents have been illustrated in Fig 1 as 

an example. Also, the infinite 

coefficients of these materials are given in Tables 1 in 

different solvents such as water, ethanol, methanol, 

benzene, and toluene. 

 

Figure 1. The activity coefficients of the binary mixture

components including thiophene in dif

ethanol, methanol, benzene, and toluene) versus the mole 

fraction of thiophene using COSMO

pressure at 298.15 K.

The pioneers and the developers of the COSMO

model have shown that the model is quite reliable.

[18], [34], [39]–[41] On the other hand, the integrity of 

the evaluated data with the COSMO

important rather than the accuracy of the data, and no 

data comparison with experimental results has been 

carried out. The COSMO-SAC uses th

mechanics data as primary data and evaluates chemical 

thermodynamic data.[42] These two types o

be in contradiction due to their different microscopic 

and macroscopic approaches. Accordingly, the 

evaluated data has been used without validation in the 

series of equation to reach the activity coefficients [16]. 

Also, the evaluated activity coefficients could be used 

through the thermodynamic relation to calculate the 

The activity coefficient of the organic compounds in 

nt solvents has been predicted using the COSMO-

profiles of the materials 

to evaluate the thermodynamic properties based on the 

statistical thermodynamic relations [16]. The 

profiles for the studied materials are 

[24], [34]. The predicted 

activity coefficient data for binary mixtures of thiophene 

in the studied solvents have been illustrated in Fig 1 as 

an example. Also, the infinite dilution activity 

coefficients of these materials are given in Tables 1 in 

different solvents such as water, ethanol, methanol, 

 

 

 

The activity coefficients of the binary mixture’s 

components including thiophene in different solvents (water, 

ethanol, methanol, benzene, and toluene) versus the mole 

fraction of thiophene using COSMO-SAC under 0.1 MPa 

pressure at 298.15 K. 

The pioneers and the developers of the COSMO-SAC 

model have shown that the model is quite reliable.[16]–

On the other hand, the integrity of 

the evaluated data with the COSMO-SAC is more 

important rather than the accuracy of the data, and no 

data comparison with experimental results has been 

SAC uses the quantum 

mechanics data as primary data and evaluates chemical 

These two types of data might 

be in contradiction due to their different microscopic 

and macroscopic approaches. Accordingly, the 

evaluated data has been used without validation in the 
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machine learning process.Base on the thermodynamics 

rules the activity coefficient of a chemical directly 

depended on the Gibbs free energy while it is 

relationship with enthalpy is much more complex. 

Accordingly, a simple regression could not used to 

predict the enthalpy with activity coefficient. At this 

point, the machine learning regression could be used in 

the prediction of the enthalpy of hydration based on the 

infinite dilution activity coefficient of a chemical in 

different solvents at given temperature and pressure. 

3.2. Machine learning prediction of enthalpy of 

hydration 

A pre-processing step was required to match whole 

variables based on the units, significant digits, and other 

parameters. The pre-processing has been carried out 

with python encoding of the evaluated COSMO-SAC 

dataset and FreeSolv dataset. The datasets have been 

merged and prepared for the machine learning 

regression process. It should be noted that this step of 

the procedure is crucial before executing machine 

learning and a little conflict might cause significant 

errors in results. Accordingly, the dataset has been 

checked manually for any defection after all automated 

procedures. 

 
 

Table 1. The infinite dilution activity coefficient (γ
∞
) of some organic materials calculated with 

COSMO-SAC model under 0.1 MPa at 298.15 K. 

Compound Name γ
∞ 

 Water Benzene Toluene Ethanol Methanol 

TOLUENE 4607.74 1.024963 1 2.831673 5.66182 

1-NITROBUTANE 1502.968 1.086386 1.211993 2.39232 4.183599 

2-NITROPROPANE 357.1037 1.109689 1.264321 2.20636 3.391647 

THIOPHENE 482.2757 1.004869 1.056671 1.775255 2.868932 

ETHYLENE 67.63741 1.001869 1.001967 1.693681 2.384917 

2-BUTOXYETHANOL 1284.476 11.54071 12.95789 1.136087 2.080568 

CYCLOHEXENE 36110.42 1.376674 1.185683 3.554677 7.698908 

PIPERAZINE 2.555234 3.16513 3.756248 0.117807 0.074906 

O-CRESOL 399.1619 1.763261 2.013672 0.360845 0.748153 

PYRROLE 8.400408 3.95112 4.91893 0.085345 0.152817 

INDANE 29574.31 1.119021 1.027768 3.745279 8.91272 

ISOBUTANE 6704.744 1.795927 1.463579 3.909756 8.331183 

PYRROLIDINE 41.07241 1.621331 1.617396 0.345506 0.363241 

P-XYLENE 22676.63 1.100848 1.020159 3.546547 8.21727 

PYRENE 1205668 1.067918 0.953135 4.377152 13.97494 

NITROBENZENE 1703.4 1.094654 1.226589 2.474726 4.259157 

1-METHYLNAPHTHALENE 53959.37 1.013451 0.993618 3.548059 8.59341 

NAPHTHALENE 15133.97 0.988594 1.003646 2.925318 6.286829 

ACETONE 9.59154 0.954739 1.158579 1.285666 1.318272 

METHYLCYCLOHEXANE 125171.2 2.386617 1.792137 6.530031 17.88058 

ACETONITRILE 7.085093 2.824741 3.829731 2.714958 2.591342 

2-METHYLPYRIDINE 149.8361 1.01337 1.10866 0.931551 1.139583 

BENZENE 1041.27 1 1.021475 2.336048 4.054609 

METHANE 67.42368 1.297832 1.179531 1.878916 2.695403 

P-CRESOL 275.5887 6.094782 6.852709 0.218295 0.494917 

3-METHYLHEXANE 516316.5 2.512464 1.836551 7.869931 24.33865 

CYCLOPENTENE 2688.153 1.273184 1.127777 2.952746 5.813084 

3-METHYLPYRIDINE 105.622 0.992501 1.099709 0.847358 0.980889 

METHANOL 3.068168 29.72688 36.09604 1.017971 1 

CYCLOHEXANOL 428.6342 9.52625 9.839024 1.257546 1.831696 

ETHANOL 9.129828 13.42828 15.70898 1 1.03061 

IODOBENZENE 8319.385 0.957857 0.929615 2.270389 4.725659 

MORPHOLINE 8.486411 1.629723 1.955081 0.467688 0.402831 

CHLOROFORM 313.3233 0.863334 0.795296 0.184994 0.408778 

2-CHLOROBUTANE 4244.71 1.083709 1.017008 2.891984 5.831206 
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2-ETHOXYETHANOL 80.15009 12.98919 15.81315 0.969956 1.361784 

2-BROMOPROPANE 1326.125 1.014375 0.998383 2.472567 4.465382 

BENZONITRILE 596.9878 1.263966 1.502918 2.397146 3.663027 

ANTHRACENE 536203.1 1.05441 0.961368 4.149903 12.34225 

M-CRESOL 86.54336 2.908726 3.314322 0.047316 0.118839 

ANILINE 72.91311 1.751454 2.174237 0.109579 0.218697 

CYCLOHEXANONE 96.35549 0.757274 0.842338 1.31383 1.69736 

ACETALDEHYDE 6.825299 1.158496 1.425218 1.636963 1.67869 

BENZALDEHYDE 434.4909 1.137095 1.331367 2.283804 3.363647 

ACENAPHTHENE 164042.2 1.144738 1.029774 4.383909 11.98834 

PHENOL 17.98833 2.9975 3.554209 0.03095 0.069694 

M-XYLENE 21057.34 1.090546 1.016146 3.515932 8.088803 

2-METHOXYETHANOL 20.32428 15.06353 19.21088 0.955238 1.166887 

METHYLCYCLOPENTANE 43985.54 2.147471 1.661206 5.420284 13.57042 

CYCLOHEXANE 36110.42 2.199196 1.699449 5.382837 13.243 

ACETAMIDE 1.968434 815.2329 1218.74 1.487955 1.062032 

1-CHLOROBUTANE 5695.793 1.092603 1.019959 2.950836 6.101385 

1-BROMOHEPTANE 746649.9 1.401003 1.160729 5.798153 18.39757 

2-PHENYLETHANOL 1044.872 6.176531 7.283265 0.957373 1.727539 

DIBROMOMETHANE 182.2753 0.853986 0.873482 0.441019 0.771225 

PHENANTHRENE 401476.4 1.030535 0.950743 3.876605 11.22711 

PIPERIDINE 158.414 1.599406 1.527754 0.47179 0.572053 

PYRIDINE 35.5597 1.132025 1.305483 0.884268 0.922824 

HYDRAZINE 0.034717 31.08734 47.28629 0.225602 0.075435 

BROMOBENZENE 5003.623 0.959659 0.936149 2.178889 4.347208 

N-PENTANE 39791.7 2.12482 1.648148 5.31261 13.18544 

O-XYLENE 15565.94 1.061277 1.006018 3.350859 7.478149 

3-METHYLHEPTANE 2455148 2.834881 1.993342 10.13725 35.83899 

ETHANE 404.6412 1.543673 1.334523 2.575437 4.308259 

DICHLOROMETHANE 96.67328 0.858001 0.884986 0.435087 0.714049 

STYRENE 6558.368 0.99514 1.018289 2.728007 5.47113 

SEC-BUTYLBENZENE 219925.6 1.201203 1.059403 4.72396 13.35115 

PROPANE 1792.976 1.678297 1.405363 3.221053 6.127064 

HEXACHLOROETHANE 204436 1.527744 1.213086 4.326106 12.2774 

1-NITROPROPANE 382.3169 1.175002 1.363469 2.255589 3.444005 

1-BROMOBUTANE 7556.534 1.09394 1.019452 3.023963 6.401466 

FLUOROBENZENE 1622.244 0.961736 0.960846 1.98872 3.59366 

1-ETHYLNAPHTHALENE 197526 1.052595 0.995706 4.245522 11.59623 

TETRAHYDROFURAN 57.02092 0.818083 0.84287 1.045901 1.282599 

CYCLOPENTANONE 33.86651 0.799311 0.928438 1.262986 1.471186 

HEXACHLOROBENZENE 7492273 2.067729 1.50015 8.42132 32.56266 

1-BROMOPROPANE 1703.173 1.034672 1.001359 2.492793 4.617258 

ISOBUTYLBENZENE 274990.8 1.243559 1.079586 4.899099 14.14769 

AMMONIA 0.035364 6.879251 9.123908 0.114445 0.048416 

NITROMETHANE 30.56728 2.504135 3.226734 2.040181 2.397103 

FORMALDEHYDE 6.761536 1.595174 1.942322 2.140616 2.208623 

4-METHYLPYRIDINE 98.57728 0.98488 1.094641 0.817215 0.935092 

GLYCEROL 3.514602 218.6327 355.2905 1.512473 1.263066 

TERT-BUTYLBENZENE 139255.5 1.161734 1.041633 4.409316 11.9489 

QUINOLINE 972.5715 1.080042 1.20573 1.375235 1.975477 

SULFOLANE 34.83991 1.450592 2.140087 3.159531 3.481822 

N-BUTANE 8366.406 1.885813 1.520299 4.127596 8.960831 
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OCTAFLUOROCYCLOBUTANE 108346.3 1.962956 1.489617 4.495705 12.18102 

2-METHYLTHIOPHENE 2267.019 1.005446 1.007084 2.390142 4.465463 

2-METHYLHEXANE 613698.5 2.539177 1.849543 8.103687 25.442 

QUINONE 143.3082 1.739593 2.321355 2.783526 3.623203 

DIIODOMETHANE 612.2563 0.851717 0.854786 0.602674 1.136215 

CYCLOPENTANE 10647.03 1.944532 1.555703 4.333652 9.604323 

CHLOROBENZENE 4031.099 0.967464 0.938451 2.148591 4.223395 

ETHYLBENZENE 17458.51 1.073951 1.010135 3.411851 7.709983 

N-METHYLACETAMIDE 3.462217 30.44725 40.68785 0.84572 0.61492 

 

 

The support vector, random forest, and gradient 

boosting decision tree regression methods have been 

applied to predict the enthalpy of hydration of organic 

materials with low molecular weight that are 

randomly selected with the automatic modules of 

Python scikit learn. The performance of studied ML 

methods in the predicting of the enthalpy of hydration 

is discussed for the studied methods with various train 

and test subsets ratios.  The results of the applied ML 

methods have been evaluated with a different train and 

test ratio with 0.05:0.95, 0.10:0.90, 0.15:0.85, 

0.20:0.80 and 0.25:0.75 to investigate the effect of the 

data training on the accuracy of the prediction.  

The corresponding mean absolute error and mean 

square errors of the ML methods with different 

training and testing rates is summarized in Table 2 for 

the SVR to compare the kernels performance. 

Evidently, the reduced training rate led to increase the 

MAE and MSE values for the ML methods as 

demonstrated in Table 2. However, the results are not 

good enough that might be due to the origin of the 

SVR that comes from elastic net regression that is a 

type of linear regression. 

 
Table 2. Mean absolute error, mean square error, and root 

mean square error in prediction of enthalpy of hydration of 

organic materials using SVR with different kernels under 

0.1 MPa at 298.15 K. 

Train: Test ratio MAE MSE RMSE 

SVR-Polynomial  

0.05: 0.95 3.11 15.94 3.99 

0.10: 0.90 3.09 15.23 3.90 

0.15: 0.85 4.04 25.40 5.04 

0.20: 0.80 4.18 23.17 4.81 

0.25: 0.75 8.43 72.04 26.88 

SVR-Gaussian 

0.05: 0.95 3.12 15.98 3.99 

0.10: 0.90 3.09 15.23 3.90 

0.15: 0.85 4.15 27.27 5.22 

0.20: 0.80 4.23 24.10 4.91 

0.25: 0.75 3.01 13.91 3.73 

SVR-Sigmoid 

0.05: 0.95 3.09 15.74 3.97 

0.10: 0.90 3.05 15.04 3.88 

0.15: 0.85 3.93 25.57 5.06 

0.20: 0.80 4.18 23.48 4.85 

0.25: 0.75 3.26 14.97 3.87 

Overfitting and bias should be resolved in any 

regression problem. Avoiding bias and overfitting 

could be vanquished using another ML method named 

support vector regression (SVR) that is developed 

with an evolutionary process starting from linear 

regression, lasso, ridge, elastic net, and SVR. Also, the 

SVR includes different kernels that could be used to 

find the data distribution type and could be used to 

find the importance of the features in the regression 

[43]. In the SVR method, the degree of bias towards a 

particular result is much less than other methods. 

Since the degree of bias is low in this method, it has 

been used as reliability to interpret the observed linear 

relationship. In this respect, the SVR kernels including 

polynomial, Gaussian, and sigmoid have been used. 

The linear kernel shows the lowest regression error 

rate, indicating that linear relationships that were 

previously detected are still exist after all processing.  

According to the results of the SVR machine learning, 

some other machine learning methods should be used 

to overcome these problems. The gradient boosting 

decision tree regression (GBDTR) is an effective 

method that is comparable to the random forest 

regression (RFR) [44–46]. The results for predicting 

enthalpy of hydration of low molecular weight 

molecules using RFR and GBDTR ML methods are 

given in Fig 2 for the train and test ratio of 0.80:0.20. 

Both methods have been able to accurately predict the 

enthalpy of hydration of the test data.  

b a 
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Fig 2. The scattering plot of predicted Enthalpy of 

hydration values of tested molecules versus the FreeSolv 

dataset values with a train and test ratio of 0.80:0.20: a) 

RFR, b) GBDTR. 

 

Also, the corresponding deviations of the RFR and 

GBDTR have been given in Tables 3 and 4, 

respectively. As could be seen the results does not 

have significant differences while the RFR shows 

higher accuracy rather than the GBDTR. This could 

be related to the lower depth of decision trees in the 

GBDTR rather than the RFR. It means, the prediction 

of the enthalpy of hydration needs decision trees with 

higher depth with infinite dilution activity coefficient. 

However, the GBDTR is a faster method rather than 

the RFR due to its practical use in the higher data 

training rate. Accordingly, both RFR and GBDTR 

could be used to predict the thermodynamic properties 

with higher degree of complexity between the label 

and existing thermodynamic features. 

 
Table 3. Mean absolute error, mean square error, and root 

mean square error in prediction of enthalpy of hydration of 

organic materials using RFR under 0.1 MPa at 298.15 K. 

Train: Test ratio MAE MSE RMSE 

0.05: 0.95 0.61 0.44 0.66 

0.10: 0.90 0.83 1.06 1.26 

0.15: 0.85 0.87 1.20 1.32 

0.20: 0.80 0.89 1.35 1.46 

0.25: 0.75 0.93 1.50 1.52 

 

 
Table 4. Mean absolute error, mean square error, and root 

mean square error in prediction of enthalpy of hydration of 

organic materials using GBDTR under 0.1 MPa at 298.15 

K. 

Train: Test ratio MAE MSE RMSE 

0.05: 0.95 0.71 0.62 0.79 

0.10: 0.90 0.83 1.21 1.10 

0.15: 0.85 0.90 1.69 1.30 

0.20: 0.80 0.96 2.43 1.56 

0.25: 0.75 1.22 2.58 1.60 

 

4. Conclusion 

Different machine learning methods have been 

utilized to predict the enthalpy of hydration of low 

molecular weight organic molecules that were 

common between the FreeSolv open-source dataset 

and VT2005 σ-profiles dataset. Since there is no linear 

relationship between the activity coefficients and 

enthalpy of hydration, machine learning approach has 

been used to predict the enthalpy of hydration of the 

low molecular weight organic molecules using infinite 

dilution activity coefficient evaluated from COSMO-

SAC model. The SVR, RFR, and GBDTR machine 

learning methods used to predict of enthalpy of 

hydration. However, the RFR and GBDTR have more 

accuracy in the prediction of enthalpy of hydration 

rather than the SVR. This might be related to the bias 

in SVR method and corresponding overfitting or 

underfitting problems. 
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