An overview of the use of plants, polymers and nanoparticles as antibacterial materials

Document Type : Review Article

Authors

1 Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran

2 Department of Polymer Engineering, Payame Noor University, Tehran, Iran

3 Department of Biochemistry, Payame Noor University, Tehran, P.O. Box 19395-3697, Iran

4 Department of chemistry, Farzanegan Talented High School, Rasht, Iran

5 Polymer Department, Technical Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

The expansion of industry, climate change, deforestation, and pollution of oceans, and exponential increase in the multidrug-resistant bacteria, humans are more to danger than ever before. In recent years, humans have been affected more than ever by bacterial and fungal infections and even mosquito-related diseases such as lymphatic filariasis, malaria, and cellulitis. For example, Candida albicans and Aspergillus fumigatus can cause invasive fungal infections in any organ of humans, and their resistance to antibiotics is increasing. For a long period of time, plant components have been used for curing the various ailments. Herbs were the basis of medicine in the past and also are extensively used in some countries such as China and India. The study of antimicrobial effects of plants is increasing continuously, which is due to the presence of diverse levels of their bioactive compounds. Humans are so interested in using natural antibacterial compounds like plant extracts and spices because they have their own characteristic flavor. Plants are useful for supporting human health and some parts of the plant (flowers, leaves, stems, and roots) have medicinal activities such as analgesics, antispasmodics, antimicrobials. With recent advances, in addition to plants, polymers and nanoparticles have come to the help of medical cures. Polymers and nanoparticles due to their unique properties, can be used in a variety of fields such as prosthesis, antibacterial and antifungal surfaces, drug carrier, gene delivery, cancer diagnosis, colorimetric detection of cancer cells, and cancer imaging. In this study, researches on plants, polymers, and nanoparticles antibacterial are reviewed.

Keywords

Main Subjects


  1. Woodford and D. M. Livermore, Infections caused by Gram-positive bacteria: a review of the global challenge. J. Infect., 59 (2009) S4-S16.
  2. Irwansyah,Y. Q. Li, W. Shi, D. Qi, W. R. Leow, M. B. Tang, S. Li and X. Cheng, Gram-Positive Antimicrobial Activity of Amino Acid-Based Hydrogels. Adv. Mater., 27 (2015) 648-654.
  3. Brown, J. M. Wolf, R. Prados-Rosales and A. Casadevall, Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol., 13 (2015) 620-630.
  4. Ramachandran, Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence., 5 (2014) 213-218.
  5. Y. Tischler and T. M. Hohl, Menacing mold: recent advances in Aspergillus pathogenesis and host defense. J. Mol. Biol., 431 (2019) 4229-4246.
  6. Schuster, N. Dunn-Coleman, J. C. Frisvad and P. W. Van Dijck, On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol., 59 (2002) 426-435.
  7. Monnet, V. Juillard, and R. Gardan. Peptide conversations in Gram-positive bacteria. Crit Rev Microbiol., 42.3 (2016) 339-351.
  8. Zakaria, M. Osman, F. Dabboussi, R. Rafei, H. Mallat, N. Papon, J. P. Bouchara and M. Hamze, Recent trends in the epidemiology, diagnosis, treatment, and mechanisms of resistance in clinical Aspergillus species: a general review with a special focus on the Middle Eastern and North African region. J. Macromol. J Infect Public Health., 13 (2020) 1-10.
  9. C. Cole, N. P. Govender, A. Chakrabarti, J. Sacarlal and D. W. Denning, Improvement of fungal disease identification and management: combined health systems and public health approaches. Lancet Infect Dis., 17 (2017):e412-e419.
  10. Chowdhary, C. Sharma and J. F. Meis, Azole-resistant aspergillosis: epidemiology, molecular mechanisms, and treatment. J Infect Dis., 216 (2017) S436-S444.
  11. Jubeh, Z. Breijyeh and R. Karaman, Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules., 25 (2020) 2888.
  12. Mai-Prochnow, M. Clauson, J. Hong and A. B. Murphy, Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep., 6 (2016) 1-11.
  13. Hammoudi Halat and C. Ayoub Moubareck, The current burden of carbapenemases: Review of significant properties and dissemination among gram-negative bacteria. Antibiotics., 9 (2020) 186.
  14. Karakonstantis, E. I. Kritsotakis and A. Gikas, Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J. Antimicrob. Chemother., 75 (2020) 271-282.
  15. Sheydaei, Sodium sulfide-based polysulfide polymers: synthesis, cure, thermal and mechanical properties. J. Sulfur Chem., (2022) 1-13. doi: 10.1080/17415993.2022.2088235.
  16. Arzanlou, W. C. Chai and H. Venter, Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 61 (2017) 49-59.
  17. Mehrad, N. M. Clark, G. G. Zhanel and J. P. Lynch III, Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest., 147 (2015) 1413-1421.
  18. Cepas, Y. López, E. Muñoz, D. Rolo, C. Ardanuy, S. Martí, M. Xercavins, J. P. Horcajada, J. Bosch and S. M. Soto, Relationship between biofilm formation and antimicrobial resistance in gram-negative bacteria. Microb. Drug Resist., 25 (2019) 72-79.
  19. J. Macdonald, K. Wu, S. K. Sehmi, S. Noimark, W. J. Peveler, H. Du Toit, N. H. Voelcker, E. Allan, A. J. MacRobert, A. Gavriilidis and I. P. Parkin, Thiol-capped gold nanoparticles swell-encapsulated into polyurethane as powerful antibacterial surfaces under dark and light conditions. Sci Rep., 16 (2016) 1-11.
  20. Alinia-Ahandani and M. Sheydaei, Overview of the introduction to the new coronavirus (Covid19): A Review. J Med Biol Sci Res., 6 (2020) 14-20.
  21. Boix-Amorós, C. Martinez-Costa, A. Querol, M. C. Collado and A. Mira, Multiple approaches detect the presence of fungi in human breastmilk samples from healthy mothers. Sci Rep., 7 (2017) 1-13.
  22. Fujiyoshi, D. Tanaka and F. Maruyama, Transmission of airborne bacteria across built environments and its measurement standards: a review. Front. Microbiol., 8 (2017) 2336.
  23. Edraki, M. Sheydaei, E. Alinia-Ahandani and E. Nezhadghaffar-Borhani, Poly(ethylene disulfide)/carbon fiber composites: cure and effect of fiber content on mechanical and thermal properties. J. Sulfur Chem., 42 (2021) 614-627.
  24. Edraki, I. M. Moghaddampour, E. Alinia-Ahandani, M. Banimahd Keivani and M. Sheydaei, Ginger intercalated sodium montmorillonite nano clay: assembly, characterization, and investigation antimicrobial properties. Chem Rev Lett., 4 (2021) 120-129.
  25. A. Al-Fregi, B. K. Al-Salami, Z. K. Al-Khazragie and A. Z. Al-Rubaie, Synthesis, characterization and antibacterial studies of some new tellurated azo compounds. Phosphorus Sulfur Silicon Relat. Elem., 194 (2019) 33-38.
  26. Sheydaei, M. R. Kalaee, M. Dadgar, M. H. Navid-Famili, A. Shockravi, M. Samar and A. Allahbakhsh, Synthesis and characterization of a novel aromatic polysulfide in the presence of phase transfer catalyst. 27th World Congress of the Polymer Processing Society, Marrakech, Morocco, P-13-1088.
  27. Sheydaei, E. Alinia-Ahandani, Z. Selamoglu, Z. Alizadeh-Terepoei and A. Boghozian-Gharghani, Some Heavy Metals in Different Parts of Consumed Chickens in Lahijan City - Iran; Health Risk Assessment. Op Acc J Bio Sci & Re., 6 (2020) 1-4.
  28. Ngaini, F. Rasin, W. S. Wan Zullkiplee and A. N. Abd Halim, Synthesis and molecular design of mono aspirinate thiourea-azo hybrid molecules as potential antibacterial agents. Phosphorus Sulfur Silicon Relat. Elem., 196 (2020) 275-282.
  29. Alinia-Ahandani, M. Sheydaei, M. Akram, Z. Selamoglu, Z. Alizadeh-Terepoei and M. Alinia-Ahandani, Heavy Metals Concentrations in Some Roadsides with Different Traffic Volumes in Rasht City-Iran. Op Acc J Bio Sci & Re., 7 (2021) 1-4.
  30. Alinia-Ahandani, Z. Alizadeh-Terepoei, M. Sheydaei and F. Peysepar-Balalami, Assessment of soil on some heavy metals and its pollution in Roodsar-Iran. Biomed J Sci & Tech Res., 28 (2020) 21977- 21979.
  31. Alinia-Ahandani, Z. Alizadeh-Terepoei and M. Sheydaei, Some pointed medicinal plants to treat the tick-borne disease. Op Acc J Bio Sci & Res., 1 (2020) 1-3.
  32. Alinia-Ahandani, M. Sheydaei, B. Shirani-Bidabadi and Z. Alizadeh-Terepoei, Some effective medicinal plants on cardiovascular diseaaes in Iran-a review. J Glob Trends Pharm Sci., 11 (2020) 8021-8033.
  33. Namivandi-Zangeneh, E. H. Wong and C. Boyer, Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect. Dis., 7 (2021) 215-253.
  34. I. Ahamed and R. Prasad, Advanced Antimicrobial Materials and Applications. Springer, Singapore. (2021).
  35. Jain, L. S. Duvvuri, S. Farah, N. Beyth, A. J. Domb and W. Khan, Antimicrobial polymers. Adv. Healthcare Mater., 3 (2014) 1969-1985.
  36. Timofeeva and N. Kleshcheva, Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol., 89 (2011) 475-492.
  37. Egamberdieva, D. Jabborova, S. Babich, S. Xalmirzaeva, K. Salakhiddinov and M. Madazimov, Antimicrobial activities of herbal plants from Uzbekistan against human pathogenic microbes. Environ. Sustain. 4 (2021) 87-94.
  38. K. Okla, A. A. Alatar, S. S. Al-Amri, W. H. Soufan, A. Ahmad and M. A. Abdel-Maksoud, Antibacterial and antifungal activity of the extracts of different parts of Avicennia marina (Forssk.) Vierh. Plants., 10 (2021) 252.
  39. Edraki, I. M. Moghaddampour, M. Banimahd Keivani and M. Sheydaei, Characterization and antimicrobial properties of Matcha green tea.. Chem Rev Lett., 5 (2022) 76-82.
  40. Ilić, M. Dodevska, M. Marčetić, D. Božić, I. Kodranov, and B. Vidović, Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods., 9 (2020) 1614.
  41. Bendjedid, S. Lekmine, A. Tadjine, R. Djelloul, and C. Bensouici, Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. Biocatal. Agric. Biotechnol., 33 (2021)101991.
  42. Danish, Q. Ali, M. M. Hafeez, and A. Malik, Antifungal and antibacterial activity of aloe vera plant extract. Biol Clin Sci Res J., 2020 (2020) 1-8.
  43. Alamholo, Investigation of Chemical Composition, Antibacterial and Antioxidant Activity of Thymus daenensis and Thymus eriocalyx Essential Oils against Human Pathogenic Bacteria. J Med Microbiol Infect Dis., 8 (2020) 148-154.
  44. S. Sadat, A. Ahani Azari, and M. Mazandarani, Evaluation of Antibacterial Activity of Ethanolic Extract of Matricaria chamomilla, Malva sylvestris and Capsella bursa-pastoris against Methicillin-Resistant Staphylococcus aureus. J Med Microbiol Infect Dis., 8 (2020) 127-131.
  45. Rubab, R. Chellia, K. Saravanakumar, S. Mandava, I. Khan, C. N. Tango, M. S. Hussain, E. B. M. Daliri, S. H. Kim, S. R. Ramakrishnan and M. H. Wang, Preservative effect of Chinese cabbage (Brassica rapa subsp. pekinensis) extract on their molecular docking, antioxidant and antimicrobial properties. PloS one., 13 (2018) e0203306.
  46. Karthik, R. Suriyaprabha, M. Vinoth, S. R. Srither, P. Manivasakan, V. Rajendran and S. Valiyaveettil, Larvicidal, super hydrophobic and antibacterial properties of herbal nanoparticles from Acalypha indica for biomedical applications. RSC Adv., 7 (2017) 41763-41770.
  47. Subramani, V. Murugan, B. K. Shanmugam, S. Rangaraj, M. Palanisamy, R. Venkatachalam, and V. Suresh, An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys Compd., 723 (2017) 698-707.
  48. Xu, Y. Wang, D. Zhang, J. Wang and Z. Yang, In situ growth of photocatalytic Ag-decorated β-Bi2O3/Bi2O2.7 heterostructure film on PVC polymer matrices with self-cleaning and antibacterial properties. Chem. Eng. J., 429 (2022) 131058.
  49. Edraki, M. Sheydaei, E. Alinia-Ahandani and E. Nezhadghaffar-Borhani, Polyvinyl chloride: chemical modification and investigation of structural and thermal properties. J. Sulfur Chem., 42 (2021) 397-409.
  50. Sheydaei, V. Pouraman, E. Alinia-Ahandani and E. Shahbazi-Ganjgah, PVCS/GO nanocomposites: investigation of thermophysical, mechanical and antimicrobial properties. J Sulfur Chem., 43 (2022) 376-390.
  51. Sun, K. Lei and M. Lang, Synthesis, structural characterization, antifouling and antibacterial properties of polypyridinium salt coated silica nanoparticles. J.Macromol. Sci. Part A Pure Appl. Chem., 58 (2021) 769-777.
  52. Li, W. Xu, X. Wang, W. Jiang, X. Ma, F. Wang, C. Zhang and C. Ren, Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. Eur. Polym. J., 146 (2021) 110253.
  53. Zhu, and A. C. Lua, Antibacterial ultrafiltration membrane with silver nanoparticle impregnation by interfacial polymerization for ballast water. J Polym Sci., 59 (2021) 2295-2308.
  54. Tekin, A. Şafaklı, F. Budak, and A. Kara, Preparation, characterization, and antibacterial activity of organo-sepiolite/chitosan/silver bionanocomposites. J. Macromol. Sci. Part A Pure Appl. Chem., 56 (2019) 403-410.
  55. Kondolot Solak, S. Kaya and G. Asman, Preparation, characterization, and antibacterial properties of biocompatible material for wound healing. Macromol. Sci. Part A Pure Appl. Chem., 58 (2021) 709-716.
  56. Tekin, D. Birhan, and H. Kiziltas, Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater. Chem. Phys., 251 (2020) 123067.
  57. Maziya, B. C. Dlamini, and S. P. Malinga, Hyperbranched polymer nanofibrous membrane grafted with silver nanoparticles for dual antifouling and antibacterial properties against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. React. Funct. Polym.,148 (2020) 104494.
  58. Khaki, H. Namazi, and S. M. Amininasab, Synthesis and identification of new thermostable polyamides containing xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles. React. Funct. Polym.,158 (2021) 104780.
  59. Sheydaei and E. Alinia-Ahandani, Cancer and the role of polymeric-carriers in diagnosis and treatment. J Fasa Univ Med Sci., 10 (2020) 2408-2421.
  60. Sheydaei and E. Alinia-Ahandani, Cancer and polymeric-carriers. Biomed J Sci & Tech Res., 31 (2020) 24107-24110.
  61. Sheydaei, E. Alinia-Ahandani and P. Ghiasvandnia, Cancer and The Role of Polymer-Carriers in Drug Delivery. J Genet Cell Biol., 4 (2020) 217-220.
  62. Sheydaei and E. Alinia-Ahandani, Breast Cancer and the Role of Polymer-Carriers in Treatment. Biomed J Sci & Tech Res., 34 (2021) 27057-27061.
  63. Sheydaei, M. Edraki, I, Mousazadeh Moghaddampour and E. Alinia-Ahandani, Poly(butylene trisulfide)/SiO2 nanocomposites: cure and effect of SiO2 content on mechanical and thermophysical properties. J. Sulfur Chem., 43 (2022) 413-425.
  64. Sheydaei, S. Talebi and M. Salami-Kalajahi, Synthesis, characterization, curing, thermophysical and mechanical properties of ethylene dichloride-based polysulfide polymers. J. Macromol. Sci. Part A Pure Appl. Chem., 58 (2021) 344-352.
  65. Sheydaei, M. Edraki, S. Javanbakht, E. Alinia-Ahandani, M. Soleimani and A. Zerafatkhah, Poly(butylene disulfide) and poly(butylene tetrasulfide): Synthesis, cure and investigation of polymerization yield and effect of sulfur content on mechanical and thermophysical properties. Phosphorus Sulfur Silicon Relat. Elem., 196 (2021) 578-584.
  66. K. Sethy, P. Mohapatra, S. Patra, D. Bharatiya and S. K. Swain, Antimicrobial and barrier properties of polyacrylic acid/GO hybrid nanocomposites for packaging application. Nano-Struct. Nano-Objects., 26 (2021) 100747.
  67. M. Factori, J. M. Amaral, P. H. Camani, D. S. Rosa, B. A. Lima, M. Brocchi, E. R. da Silva and J. S. Souza, ZnO Nanoparticle/Poly (vinyl alcohol) Nanocomposites via Microwave-Assisted Sol–Gel Synthesis for Structural Materials, UV Shielding, and Antimicrobial Activity. ACS Appl. Nano Mater., 4 (2021) 7371-7383.
  68. M .M. Ommati, A. Jamshidzadeh, R. Heidari, Z. Sun, M. J. Zamiri, F. Khodaei, S. Mousapour, F. Ahmadi, N. Javanmard and B. Shirazi Yeganeh, Ecofriendly synthesis of biosynthesized copper nanoparticles with starch-based nanocomposite: antimicrobial, antioxidant, and anticancer activities. Trace Elem. Res., (2021)1-14. doi: doi.org/10.1007/s12011-021-02812-0.
  69. S. Al Mogbel, M. T. Elabbasy, R. S. Mohamed, A. E. Ghoniem, M. F. H. Abd El-Kader and A. A. Menazea, Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. J. Polym. Res. 28 (2021) 1-8.
  70. Suleiman, M. Al-Masri, A. Al Ali, D. Aref, A. Hussein, I. Saadeddin and I. Warad, 2015. Synthesis of nano-sized sulfur nanoparticles and their antibacterial activities. J. Mater. Environ. Sci., 6 (2015) 513-518.
  71. Roy Choudhury, M. Ghosh and A. Goswami, Inhibitory effects of sulfur nanoparticles on membrane lipids of Aspergillus niger: a novel route of fungistasis. Curr Microbiol., 65 (2012) 91-97.
  72. Priyadarshi, S. Roy and J. W. Rhim, Enhanced functionality of green synthesized sulfur nanoparticles using kiwifruit (Actinidia deliciosa) peel polyphenols as capping agents. J Nanostruct Chem., (2021) 1-11.
  73. A. Abid and D. A. Kadhim, Synthesis of iron oxide nanoparticles by mixing chilli with rust iron extract to examine antibacterial activity. Materials Technology., (2021) 1-10.
  74. Garibo, H. A. Borbón-Nuñez, J. N. D. de León, E. García Mendoza, I. Estrada, Y. Toledano-Magaña, H. Tiznado, M. Ovalle-Marroquin, A. G. Soto-Ramos, A. Blanco and J.A.Rodríguez, Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep., 10 (2020) 1-11.
  75. Azizi-Lalabadi, A. Ehsani, B. Divband and M. Alizadeh-Sani, Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep., 9 (2019) 1-10.
  76. Kaushik, R. Niranjan, R. Thangam, B. Madhan, V. Pandiyarasan, C. Ramachandran, D. H. Oh and G. D. Venkatasubbu, Investigations on the antimicrobial activity and wound healing potential of ZnO nanoparticles. Appl. Surf. Sci., 479 (2019) 1169-1177.
  77. Liu, T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong and Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS nano., 5 (2011) 6971-6980.