Removal of Black Remazol in aqueous solution with activated carbons from corncobs based on the design of experiments methodology

Document Type : Research Article

Authors

1 Laboratoire de Constitution et Réaction de la Matière (LCRM) à l'UFR SSMT-Université Félix Houphouët-Boigny (UFHB) de Cocody -Côte d'Ivoire, 22 BP 582 Abidjan 22

2 Laboratoire de Chimie des Eaux (LCE) de l’Ecole Normale Supérieure d’Abidjan, 08 BP 10 Abidjan 08 Côte d’Ivoire.

3 Laboratoire des Procédés Industriels de synthèse de l’Environnement et des Energies nouvelles (LAPISEN) de l’Institut National Polytechnique Félix Houphouët Boigny de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoire.

4 Institut National de la Recherche Scientifique. Département INRS-Eau Terre et Environnement, Université du Québec, 490 rue de la Couronne, Québec, QC G1K 9A9, Canad

Abstract

This study falls not only into the theme of water depollution but also and above all into the recovery of waste (logic of the 3 R: Reduce, Reuse and Recycle). There was talk of recovering corncobs, which are considered as “agricultural waste” in developing countries such as Côte d’Ivoire. They were used as activated carbon to adsorb Black Remazol in a synthetic aqueous solution. This activated carbon obtained has a specific surface of 673.33 m²/g, a mass loss of 61.44 %, an iodine value of 168.31 mg.g-1 and a zero charge potential of 2.05. The design of experiments methodology was used on the one hand to detect the influential factors and on the other hand to optimize the elimination of this dye. Thus, in a first approach six factors (pH of the solution, mass of activated carbon, temperature, and concentration of the solution, stirring time and stirring speed) were used when using the Hadamard matrix. This showed that only three parameters, the mass of adsorbent, the concentration of the solution and the stirring time actually have an influence on the response. The results of the full two-level factorial design showed that the maximum removal rate of Black Remazol is 96.67 % under the conditions of stirring a solution with a concentration of 10 mg/L of this dye with a mass of adsorbent of 0.3 g for 20 minutes.

Keywords

Main Subjects


  1.  B.  Mansour, H. Boughzala, O. Dridi, (2011). Les colorantes textiles sources decontamination de l’eau : Criblage de la toxicité et des méthodes de traitement. Revue Des Sciences De L'Eau. 24. 10.7202/1006453ar.
  2.  G. Yakun, D. Junkai, Z. Tong, et al. YeastFab : The design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae. Nucleic Acids Research 43(2015) 1-14.
  3.  D. Moussa, D. Soro, D. Kouadio, et al.; Etude cinétique de la photodégradation du colorant Red 6 en solution aqueuse. Int. J. of Adv. Res. 7(2019): 124-130.
  4.  S. Rangabhashiyam, N. Anu, S. Narayanasamy, Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering 1(2013) 629–641.
  5.  M.A. Ahmad, S.G. Herawan, and A.A. Yusof (2014) : Effect of activation time            on the pinang frond based activated carbon for remazol brilliant blue r removaL Journal of Mechanical Engineering and Sciences          (JMES) Volume 7, pp. 1085-1093.
  6.  D. Siragi, B. MAAZOU, Halidou I. HIMA, Elimination du chrome par ducharbon actif élaboré et caractérisé à partir de la coque du noyau de Balanites           Aegyptiaca   Int. J. Biol. Chem. Sci. 11(2017) 3050-3065.
  7.  M. Bagheri Sadr, A. Bozorgian, An Overview of Gas Overflow in Gaseous Hydrates, Journal of Chemical Reviews 3 (2021), 66-82
  8.  A. Samimi, S. Zarinabadi, A. Bozorgian, Optimization of Corrosion Information in Oil and Gas Wells Using Electrochemical Experiments, International Journal of New Chemistry, 8 (2021), 149-163.
  9.  A. Abo Essis, Y. Kouakou, Y. Yobouet, A. Trokourey, Adsorption of Remazol Black 5 and Indigo Carmine on Corn Cobs Activated Carbon: Kinetic, Equilibrium, and Thermodynamic Studies, Indian Journal of Advances in Chemical Sciences. 3 (2021) 101-119.
  10.  J. Muthanna, K. Samar, Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations, Chemical Engineering Journal 211 (2012): 200-207
  11.  A. Samimi, K. Kavosi, S. Zarinabadi, A. Bozorgian, Optimization of the Gasoline Production Plant in order to Increase Feed Progress in Chemical and Biochemical Research, 3 (2020), 7-19
  12.  M. Feinberg, Optimisation de la réponse. In : La validation des méthodesd’analyse-Une approche chimiométrique de l’assurance qualité du laboratoire. Masson, Paris, (1996) 255–271
  13.  Aboua Kouassi Narcisse ; Optimisation par le plan factoriel complet desconditions de production de charbon actif et son utilisation pour l’élimination de colorants et métaux lourds en solutions aqueuses, Thèse de Doctorat UFR SSMT, Université Félix Houphouët Boigny, Abidjan Côte d’Ivoire. (2013) 194 pages.
  14.  G. Atheba, N. Allou, B. Dongui, Adsorption du butylparabène sur ducharbon activé à base des coques de coco provenant de Côte d'Ivoire. International      Journal of Innovation and Scientific Research. 13 (2015) 530-541.
  15.  F. Kafack, Etude des performances des charbons actifs préparés à partir debiomasses tropicales pour l’élimination du chrome et diuron en milieu aqueux, Mémoire de Master de l’Institut International d’Ingénierie de l’Eau et de l’Environnement. (2012). 54 pages.
  16.  G. Afrane, O, Achaw, Effect of the concentration of inherent mineral elements on the adsorption capacity of coconut shell-based activated carbons. Bioresource Technology, 99 (2008) 6678-6682.
  17.  T. Wimonrat, S. Manop, H. Phunsiri, Preparation of activated carbon derived from. Jatropha curcas fruit shell by simple thermo-chemical activation and      characterization of  their physico-chemical properties. Chemical Engineering  Research and Design   89 (2011) 335- 340.
  18.  A. Bozorgian, Investigation of the effect of Zinc Oxide Nano-particles and Cationic Surfactants on Carbon Dioxide Storage capacity, Advanced Journal of Chemistry, Section B: Natural Products and Medical Chemistry, 3 (2021) 54-61.
  19.  A. Zahangir, M. Suleyman, T. Juria, Statistical optimization of adsorption    processes for removal of 2,4-dichlorophenol by activated carbons derived from oil palm  empty fruit bunches. Journal of Environmental Sciences, 19(2007) 674-677.
  20.  S. Tahiri, Traitement et valorisation des déchets solides industriels : mise en valeur des dérayures, des refentes en bleu et des poussières du ponçage du cuir en stain issues des tanneries. Thèse de doctorat de l’Université de Casablanca, Maroc, 2002.
  21.  K. Kifuani, M. Mukana, V. Noki, E. Musibono, P. Nzuzi, P. Pungi and B. Kunyima, Adsorption du bleu de méthylène en solution aqueuse sur charbon actif obtenu    à partir des sciures végétales. Préparation et caractérisation du charbon actif. Révue  Congolaise des Sciences Nucléaires, Vol. 20, N° 1/2, 2004.
  22.  S. Elbariji, M. Lamine, H. Eljazouli,H. Kabli, Traitement et valorisation des sous-produits du bois, Application à l'élimination des colorants industriels, Comptes rendus Chimie, 9 (2016) 1314-1321.
  23.  A. Bozorgian, Investigation of Hydrate Formation Kinetics and Mechanism of Effect of Inhibitors on it, a Review, Journal of Chemical Reviews, 3 (2021), 50-65.
  24.  V. Basava Rao, S.M.  Mohan Rao, Adsorption studies on treatment of textile dyeing industrial effluent by flash, Chemical Engineering Journal, 116 (2006) 77-84.
  25.  F. Asadzadeh, P. Sajad, Zein/EDTA/chlorophyll/nano-clay Biocomposite Sorbent: Investigation Physicochemical Properties Sorbent and Its Ability to Remove Contaminants of Industrial Wastewater. Journal of Polymers and the Environment, 30 (2022) 2109—2127.
  26.  P. Sajad, F. Asadzadeh, I. Karimi Sani, Synthesis of Magnetic Gluten/Pectin/Fe3O4 Nano‑hydrogel and Its Use to Reduce Environmental Pollutants from Lake Urmia Sediments. Journal of Inorganic and Organometallic Polymers and Materials (2020).
  27.  F. Asadzadeh, S. Pirsa, Specific removal of nitrite from Lake Urmia sediments by biohydrogel based on isolated soy protein/tragacanth/mesoporous silica nanoparticles/lycopene. Global Challenges 4(2020).