Characterization and antimicrobial properties of Matcha green tea

Document Type : Research Article


1 Polymer Department, Technical Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Technical and Vocational University (TVU), Lahijan, Iran

3 Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-4697, Tehran, Iran

4 Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran


Matcha, made from the finely ground powder of green tea leaves, is used as a nutritious food ingredient because of its unique properties. In this study, Matcha was characterized using Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDX). Also, the antimicrobial properties of Matcha against 8 types of bacteria, 1 type of fungus, and 1 type of yeast were investigated. The results showed that Matcha has a completely amorphous structure and has a high content of carbon and oxygen. The results of antibacterial tests showed that Matcha has the ability to inhibit gram-positive and gram-negative bacteria as well as yeast, but has no effect on the fungus. Also, Matcha has a greater effect on gram-positive bacteria, which is due to the simple and reasonably porous cell wall of these bacteria. According to the results, the maximum and minimum inhibition zones created by Matcha belonged to Pseudomonas aeruginosa and Escherichia coli, respectively.


Main Subjects

  • Woodford and D. M. Livermore, Infections caused by Gram-positive bacteria: a review of the global challenge. J. Infect., 59 (2009) S4-S16.
  • Irwansyah,Y. Q. Li, W. Shi, D. Qi, W. R. Leow, M. B. Tang, S. Li and X. Cheng, Gram-Positive Antimicrobial Activity of Amino Acid-Based Hydrogels. Adv. Mater., 27 (2015) 648-654.
  • Brown, J. M. Wolf, R. Prados-Rosales and A. Casadevall, Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol., 13 (2015) 620-630.
  • Ramachandran, Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence., 5 (2014) 213-218.
  • Y. Tischler and T. M. Hohl, Menacing mold: recent advances in Aspergillus pathogenesis and host defense. J. Mol. Biol., 431 (2019) 4229-4246.
  • Schuster, N. Dunn-Coleman, J. C. Frisvad and P. W. Van Dijck, On the safety of Aspergillus niger – a review. Appl Microbiol Biotechnol., 59 (2002) 426-435.
  • Zakaria, M. Osman, F. Dabboussi, R. Rafei, H. Mallat, N. Papon, J. P. Bouchara and M. Hamze, Recent trends in the epidemiology, diagnosis, treatment, and mechanisms of resistance in clinical Aspergillus species: a general review with a special focus on the Middle Eastern and North African region. J. Macromol. J Infect Public Health., 13 (2020) 1-10.
  • C. Cole, N. P. Govender, A. Chakrabarti, J. Sacarlal and D. W. Denning, Improvement of fungal disease identification and management: combined health systems and public health approaches. Lancet Infect Dis., 17 (2017):e412-e419.
  • Chowdhary, C. Sharma and J. F. Meis, Azole-resistant aspergillosis: epidemiology, molecular mechanisms, and treatment. J Infect Dis., 216 (2017) S436-S444.
  • Jubeh, Z. Breijyeh and R. Karaman, Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules., 25 (2020) 2888.
  • Sheydaei, V. Pouraman, E. Alinia-Ahandani and S. Shahbazi-Ganjgah, PVCS/GO nanocomposites: investigation of thermophysical, mechanical and antimicrobial properties. J. Sulfur Chem., (2022):1-15. DOI: 10.1080/17415993.2022.2036151.
  • Hammoudi Halat and C. Ayoub Moubareck, The current burden of carbapenemases: Review of significant properties and dissemination among gram-negative bacteria. Antibiotics., 9 (2020) 186.
  • Karakonstantis, E. I. Kritsotakis and A. Gikas, Pandrug-resistant Gram-negative bacteria: a systematic review of current epidemiology, prognosis and treatment options. J. Antimicrob. Chemother., 75 (2020) 271-282.
  • Mazzariol, A. Bazaj and G. Cornaglia, Multi-drug-resistant Gram-negative bacteria causing urinary tract infections: a review. J. Chemother., 29 (2017) 2-9.
  • Arzanlou, W. C. Chai and H. Venter, Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 61 (2017) 49-59.
  • Mehrad, N. M. Clark, G. G. Zhanel and J. P. Lynch III, Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest., 147 (2015) 1413-1421.
  • Sheydaei, E. Edraki, I. Mousazadeh Moghaddampour and E. Alinia-Ahandani, Poly(butylene trisulfide)/SiO2 nanocomposites: cure and effect of SiO2 content on mechanical and thermophysical properties. J. Sulfur Chem., (2022):1-13. DOI: 10.1080/17415993.2022.2040503.
  • J. Macdonald, K. Wu, S. K. Sehmi, S. Noimark, W. J. Peveler, H. Du Toit, N. H. Voelcker, E. Allan, A. J. MacRobert, A. Gavriilidis and I. P. Parkin, Thiol-capped gold nanoparticles swell-encapsulated into polyurethane as powerful antibacterial surfaces under dark and light conditions. Sci Rep., 16 (2016) 1-11.
  • Alinia-Ahandani and M. Sheydaei, Overview of the introduction to the new coronavirus (Covid19): A Review. J Med Biol Sci Res., 6 (2020) 14-20.
  • Boix-Amorós, C. Martinez-Costa, A. Querol, M. C. Collado and A. Mira, Multiple approaches detect the presence of fungi in human breastmilk samples from healthy mothers. Sci Rep., 7 (2017) 1-13.
  • Fujiyoshi, D. Tanaka and F. Maruyama, Transmission of airborne bacteria across built environments and its measurement standards: a review. Front. Microbiol., 8 (2017) 2336.
  • H. Taylor, S. M. Latham and M. E. Woolhouse, Risk factors for human disease emergence. Philos. Trans. R. Soc. London, Ser. B: Biological Sciences., 356 (2001) 983-989.
  • Edraki, I. M. Moghaddampour, E. Alinia-Ahandani, M. Banimahd Keivani and M. Sheydaei, Ginger intercalated sodium montmorillonite nano clay: assembly, characterization, and investigation antimicrobial properties. Chem Rev Lett., 4 (2021) 120-129.
  • A. Al-Fregi, B. K. Al-Salami, Z. K. Al-Khazragie and A. Z. Al-Rubaie, Synthesis, characterization and antibacterial studies of some new tellurated azo compounds. Phosphorus Sulfur Silicon Relat. Elem., 194 (2019) 33-38.
  • Alinia-Ahandani, Z. Alizadeh-Tarpoei, M. Sheydaei, Z. Selamoglu and M. Alinia-Ahandani, A New Perspective on the Introduction of Some Medicinal Plants for Oral Health and Teeth. Adv Dent & Oral Health., 15 (2022) 001-005.
  • Narayana, B. V. Ashalatha, K. K. Vijaya Raj and N. S. Kumari, Synthesis of Some New 4-{2-[(Aryl) amino]-1, 3-thiazol4-yl} benzene-1, 2-diols as Possible Antibacterial and Antifungal Agents. Phosphorus Sulfur Silicon Relat. Elem., 181 (2006) 1381-1389.
  • Ngaini, F. Rasin, W. S. Wan Zullkiplee and A. N. Abd Halim, Synthesis and molecular design of mono aspirinate thiourea-azo hybrid molecules as potential antibacterial agents. Phosphorus Sulfur Silicon Relat. Elem., 196 (2020) 275-282.
  • J. Owonubi, C. N. Ateba and N. Revaprasadu, Co-assembled ZnO-Fe2O3x-CuOx nano-oxide materials for antibacterial protection. Phosphorus Sulfur Silicon Relat. Elem., 195 (2020) 981-987.
  • Alinia-Ahandani, Z. Alizadeh-Terepoei, M. Sheydaei and F. Peysepar-Balalami, Assessment of soil on some heavy metals and its pollution in Roodsar-Iran. Biomed J Sci & Tech Res., 28 (2020) 21977- 21979.
  • Alinia-Ahandani, Z. Alizadeh-Terepoei and M. Sheydaei, Some pointed medicinal plants to treat the tick-borne disease. Op Acc J Bio Sci & Res., 1 (2020) 1-3.
  • Alinia-Ahandani, M. Sheydaei, B. Shirani-Bidabadi and Z. Alizadeh-Terepoei, Some effective medicinal plants on cardiovascular diseaaes in Iran-a review. J Glob Trends Pharm Sci., 11 (2020) 8021-8033.
  • Namivandi-Zangeneh, E. H. Wong and C. Boyer, Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect. Dis., 7 (2021) 215-253.
  • I. Ahamed and R. Prasad, Advanced Antimicrobial Materials and Applications. Springer, Singapore. (2021).
  • Jain, L. S. Duvvuri, S. Farah, N. Beyth, A. J. Domb and W. Khan, Antimicrobial polymers. Adv. Healthcare Mater., 3 (2014) 1969-1985.
  • Timofeeva and N. Kleshcheva, Antimicrobial polymers: mechanism of action, factors of activity, and applications. Appl Microbiol Biotechnol., 89 (2011) 475-492.
  • Kochman, K. Jakubczyk, J. Antoniewicz, H. Mruk and K. Janda, Health benefits and chemical composition of matcha green tea: A review. Molecules., 26 (2021) 85.
  • Jakubczyk, J. Kochman, A. Kwiatkowska, J. Kałduńska, K. Dec, D. Kawczuga and K. Janda, Antioxidant properties and nutritional composition of matcha green tea. Foods., 9 (2020) 483.
  • Burcuș, E. Vamanu, I. Sârbu and A. Petre , Antioxidant, anti-inflammatory, and antibacterial potential of different drinks based on Matcha tea. IOP Conf. Ser.: Mater. Sci. Eng., 374 (2018) 012072.
  • Xu, L. Ying, G. Hong and Y. Wang, The effects of the aqueous extract and residue of Matcha on the antioxidant status and lipid and glucose levels in mice fed a high-fat diet. Food & function., 7 (2016) 294-300.
  • Koláčková, K. Kolofiková, I. Sytařová, L. Snopek, D. Sumczynski and J. Orsavová, Matcha tea: analysis of nutritional composition, phenolics and antioxidant activity. Plant Foods Hum Nutr., 75 (2020) 48-53.
  • Li, J. Xiao, J. Tu, L. Yu and L. Niu, Matcha-fortified rice noodles: Characteristics of in vitro starch digestibility, antioxidant and eating quality. LWT. 149 (2021) 111852.
  • W. Zhao, W. X. Hu and F. S. Chen, Effect of polyphenolic compounds on starch retrogradation and in vitro starch digestibility of rice cakes under different storage temperatures. Food Biophysics., (2021) 1-12, doi: 10.1007/s11483-021-09701-y.
  • Xia, D. Wang, P. Liang, D. Zhang, X. Du, D. Ni and Z. Yu, Vibrational (FT-IR, Raman) analysis of tea catechins based on both theoretical calculations and experiments. Biophys. Chem., 256 (2020) 106282.
  • Sheydaei, S. Talebi and M. Salami-Kalajahi, Synthesis of ethylene dichloride-based polysulfide polymers: investigation of polymerization yield and effect of sulfur content on solubility and flexibility. J. Sulfur Chem., 42 (2021) 67-82.
  • Sheydaei, M. Edraki, E. Alinia-Ahandani, E. O. Rufchahi and P. Ghiasvandnia, Poly (p-xylene disulfide) and poly (p-xylene tetrasulfide): synthesis, cure and investigation of mechanical and thermophysical properties. J. Macromol. Sci. Part A Pure Appl. Chem., 58 (2020) 52-58.
  • Sheydaei, S. Talebi and M. Salami-Kalajahi, Synthesis, characterization, curing, thermophysical and mechanical properties of ethylene dichloride-based polysulfide polymers. J. Macromol. Sci. Part A Pure Appl. Chem., 58 (2021) 344-352.
  • Sheydaei, M. Edraki, S. Javanbakht, E. Alinia-Ahandani, M. Soleimani and A. Zerafatkhah, Poly (butylene disulfide) and poly (butylene tetrasulfide): synthesis, cure and investigation of polymerization yield and effect of sulfur content on mechanical and thermophysical properties. Phosphorus, Sulfur, Silicon Relat. Elem., 196 (2021) 578-584.
  • Sheydaei, M. Edraki, E. Alinia-Ahandani and E. Nezhadghaffar-Borhani, Polyvinyl chloride: chemical modification and investigation of structural and thermal properties. J Sulfur Chem., 42 (2021) 397-409.
  • Sheydaei, M. Edraki, E. Alinia-Ahandani and E. Nezhadghaffar-Borhani, Poly (ethylene disulfide)/carbon fiber composites: cure and effect of fiber content on mechanical and thermal properties. J Sulfur Chem., 42 (2021) 614-627.
  • A. Bagherinia, M. Sheydaei and M. Giahi, Graphene oxide as a compatibilizer for polyvinyl chloride/rice straw composites. J. Polym. Eng., 37 (2017) 661-670.
  • Sheydaei, H. Jabari and H. Ali-Asgari Dehaghi, Synthesis and characterization of ethylene-xylene-based polysulfide block-copolymers using the interfacial polymerization method. J Sulfur Chem., 37 (2016) 646-655.
  • D Mistry B.D, A Handbook of Spectroscopic Data Chemistry. Oxford Book Company: Jaipur. (2009).
  • Woodford, and D. M. Livermore, Infections caused by Gram-positive bacteria: a review of the global challenge. J. Infect., 59 (2009) S4-S16.
  • Irwansyah, Y. Q. Li, W. Shi, D. Qi, W. R. Leow, M. B. Tang, S. Li and X. Chen, Gram-Positive Antimicrobial Activity of Amino Acid-Based Hydrogels. Adv. Mater., 27 (2015) 648-654.
  • Sheydaei and E. Alinia-Ahandani, Cancer and the role of polymeric-carriers in diagnosis and treatment. J Fasa Univ Med Sci., 10 (2020) 2408-2421.
  • Sheydaei and E. Alinia-Ahandani, Cancer and Polymeric-Carriers. Biomed J Sci & Tech Res., 31 (2020) 24107-24110.
  • Arzanlou, W. C. Chai and H. Venter, Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 61 (2017) 49-59.
  • Sheydaei and E. Alinia-Ahandani and P. Ghiasvandnia, Cancer and The Role of Polymer-Carriers in Drug Delivery. J Genet Cell Biol., 4 (2020) 217-220.
  • Sheydaei and E. Alinia-Ahandani, Breast cancer and the role of polymer-carriers in treatment. Biomed J Sci & Tech Res., 45 (2021) 27057-27061.
  • Mohammadi, F. Masoumipour, M. Hassanshahian and T. Jafarinasab, Study the antibacterial and antibiofilm activity of Carum copticum against antibiotic-resistant bacteria in planktonic and biofilm forms. Microb. Pathogen., 129 (2019) 99-105.
  • Saeidi, N. A. Boroujeni, H. Ahmadi and M. Hassanshahian, Antibacterial activity of some plant extracts against extended-spectrum beta-lactamase producing Escherichia coli isolates. Jundishapur J. Microbiol., 8 (2015) e15434.
  • Mohsenipour and M. Hassanshahian, The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria. Avicenna J Phytomed., 5 (2015) 309-317.
  • Sepehri, F. Javadian, D. Khammari and M. Hassanshahian, Antifungal effects of the aqueous and ethanolic leaf extracts of Echinophora platyloba and Rosmarinus officinalis. Curr Med Mycol., 2 (2016) 16-25.
  • Savithramma, M. L. Rao and D. Suhrulatha, Screening of medicinal plants for secondary metabolites. Middle-East J. Sci. Res., 8 (2011) 579-584.
  • Masoumipour, M. Hassanshahian and T. Jafarinasab, Antimicrobial activity of combined extracts of trachyspermum, thymus and pistachio against some pathogenic bacteria. J. Kerman Univ. Medical Sci., 25 (2018) 153-163.
  • Mohsenipour and M. Hassanshahian, Antibacterial activity of Euphorbia hebecarpa alcoholic extracts against six human pathogenic bacteria in planktonic and biofilm forms. Jundishapur J. Microbiol., 9 (2016) e34701.
  • Sharma, S. Gupta, I. P. Sarethy, S. Dang and R. Gabrani, Green tea extract: possible mechanism and antibacterial activity on skin pathogens. Food Chem., 135 (2012) 672-675.
  • R. Farnsworth, O. Akerele, A. S. Bingel, D. D. Soejarto and Z. Guo, Medicinal plants in therapy. Bull.World Health Organ., 63 (1985) 965-981.
  • Ilić, M. Dodevska, M. Marčetić, D. Božić, I. Kodranov and B. Vidović, Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods., 9 (2020) 1614.
  • Bendjedid, S. Lekmine, A. Tadjine, R. Djelloul and C. Bensouici, Analysis of phytochemical constituents, antibacterial, antioxidant, photoprotective activities and cytotoxic effect of leaves extracts and fractions of Aloe vera. Biocatal. Agric. Biotechnol., 33 (2021) 101991.
  • Subramani, V. Murugan, B. K. Shanmugam, S. Rangaraj, M. Palanisamy, R. Venkatachalam and V. Suresh, An ecofriendly route to enhance the antibacterial and textural properties of cotton fabrics using herbal nanoparticles from Azadirachta indica (neem). J. Alloys Compd., 723 (2017) 698-707.
  • Daglia, Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol., 23 (2012) 174-181.
  • Ikigai, T. Nakae, Y. Hara and T. Shimamura, Bactericidal catechins damage the lipid bilayer. Biochim. Biophys. Acta., 1147 (1993) 132-136.
  • Yi, J. Zhu, L. Fu and J. Li, Tea polyphenols inhibit Pseudomonas aeruginosa through damage to the cell membrane. Int. J. Food Microbiol., 144 (2010) 111-117.
  • Cui, Y. J. Oh, J. Lim, M. Youn, I. Lee, H. K. Pak, W. Park,W. Jo and S. Park, AFM study of the differential inhibitory effects of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against Gram-positive and Gram-negative bacteria. Food Microbiol., 29 (2012) 80-87.
  • Yang and T. Zhang, Antimicrobial activities of tea polyphenol on phytopathogens: A review. Molecules., 24 (2019) 816.
  • R. Choudhury, K. K. Nair, R. Kumar, S. R. Choudhury, K. K. Nair, R. Kumar, R. Gogoi, C. Srivastava, M. Gopal, B. S. Subhramanyam, C. Devakumar and A. Goswami, Nanosulfur: A Potent Fungicide Against Food Pathogen, Aspergillus niger. AIP Conf. Proc., 1276 (2010) 154-157.
  • G. Bahrin, M. O. Apostu, L. M. Birsa and M. Stefan, The antibacterial properties of sulfur containing flavonoids. Bioorg Med Chem Lett., 24 (2014) 2315-2318.
  • Mai-Prochnow, M. Clauson, J. Hong and A. B. Murphy, Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma. Sci. Rep., 6 (2016) 38610.
  • Abbaszadegan, Y. Ghahramani, A. Gholami, B. Hemmateenejad, S. Dorostkar, M. Nabavizadeh and H. Sharghi, The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram- Negative Bacteria: A Preliminary Study. J. Nanomater., 23 (2015) 1-8.
  • Edraki and D. Zaarei, Evaluation of thermal and antimicrobial behavior of Montmorillonite nanoclay modified with 2-Mercaptobenzothiazole. J Nanoanalysis., 5 (2018) 26-35.

M. Edraki and D. Zaarei, Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J. Green Chem., 2 (2018) 189-200