A Review on Ammono-Carbonation Reactions: Focusing on the Merseburg Process

Document Type : Review Article


1 Toros Agri Industry and Trade Co Inc. R&D Center, Mersin, Turkey

2 Ankara University, Department of Chemical Engineering, Ankara, Turkey


Various approaches for sustainable waste management to develop the most cost efficient and feasible one are of importance, and valorization of industrial wastes or by-products has been gaining attention. Due enormous amounts of generated industrial wastes promising solutions are required to overcome increasing pressure on their environmental effects. Recycling of wastes and converting them into added value provides bulk consumption. One of the mostly accumulated industrial wastes, phosphogypsum (PG) and as well as flue gas desulfurization gypsum (FGD gypsum) might perform good effectiveness in production of sulfate compounds. Ammono-carbonation reaction of any kind of gypsum (pure, PG or FGD gypsum) with ammonium carbonate known as Merseburg Process is used to produce ammonium sulfate and calcium carbonate. This study focuses on a brief review of describing the reaction sequence, thermodynamics, and mechanism, as well as operating conditions affecting gypsum conversion, product yield and purity, to evaluate the more strategic and efficient process


Main Subjects

  • Avşar, A. Ulusal, Granular fertilizer caking: A research on the performance evaluation of coating agents, Eur. J. Chem., 12 (2021) 273-278.
  • Abou Taleb, O. Al Farooque, Towards a circular economy for sustainable development: An application of full cost accounting to municipal waste recyclables, J. Clean. Prod., 280 (2021) 124047-124052.
  • Ulusal, A., C. Avşar, Understanding caking phenomena in industrial fertilizers: A review, Chem. Biochem. Eng. Q., 34 (2020) 209-222.
  • Sun, M., Wang, L. A., Jose Mur, Q. Shen, S. Guo, Unravelling the roles of nitrogen nutrition in plant disease defences, Int. J. Mol. Sci., 21 (2020), 572-580.
  • Kopriva, M. Malagoli, H. Takahashi, Sulfur nutrition: Impacts on plant development, metabolism, and stress responses, J. Exp. Bot., 70 (2019) 4069-4073.
  • Battista, C. Masala, A. Zamboni, Z. Varanini, D. Bolzonella, Valorisation of agricultural digestate for the ammonium sulfate recovery and soil improvers production, Waste Biomass Valor., 12(2021) 6903-6916.
  • A. Shafiq, F. Nawaz, S. Majeed, M. Aurangzaib, A. Al Mamun, M. Ahsan, K. S. Ahmad, M. A. Shehzad, M. Ali, S. Hashim, T. Haq, Sulfate- based fertilizers regulate nutrient uptake, photosynthetic gas exchange, and enzymatic antioxidants to increase sunflower growth and yield under drought stress, J. Soil Sci. Plant Nutr., 21(2021) 2229-2241.
  • Albarelli, Revisiting the Merseburg process: Economic opportunity and Environmental Benefit?, Beneficiation of Phosphates: sustainability, Critical Materials, Smart Processes, 1(2019) 98-106.
  • S. Han, G. Hadiko, M. Fuji, Takahashi, Influence of initial CaCl2 concentration on the phase and morphology of CaCO3 prepared by carbonation, J.Mater. Sci., 41(2006) 4663-4667.
  • Hammas- Nasri, S. Elgharbi, M. Ferhi, K. Horchani-Naifer, M. Ferid, Investigation of phosphogypsum valorization by the integration of the Merseburg method, New J. Chem, 44(2020) 8010-8017.
  • Altiner. Effect of alkaline types on the production of calcium carbonate particles from gypsum waste for fixation of CO2 by mineral carbonation, Int. J. Coal Prep. Util., 39 (2019), 113-131.
  • K. Yadav, K. K. Yadav, M. M. S. Cabral- Pinto, N. Choudhary, G. Gnanamoorthy, V. Tirth, S. Prasad, A. H. Khan, S. Islam, N. A. Khan, The processing of calcium rich agricultural and industrial waste for recovery of calcium carbonate and calcium oxide and their application for environmental cleanup: A review, Appl. Sci., 11 (2021), 4212.
  • Hanein, M., Simoni, C. L Woo, J. L. Provis, H. Kinoshita, Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate, Energy Environ. Sci, 14(2021), 6595-6604.
  • Bao, H. Zhao, H. Li, S. Li, W. Lin, Process simulation of mineral carbonation of phosphogypsum with ammonia under increased CO2 pressure, J. CO2 Util., 17(2017) 125-136.
  • Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, E. Mohammadian, Direct carbonation of red gypsum to produce solid carbonates, Fuel Process. Technol., 126(2014) 429- 434.
  • Bouargene, A. Marrouche, S. El Issiouy, M.G. Biyoune, A. Mabrouk, A. Atbir,. Recovery of Ca(OH)2, CaCO3, and Na2SO4 from Moroccan phosphogypsum waste, Mater. Cycles Waste Manag., 21(2019) 1563-1571.
  • Dri, A. Sanna, M. M. Maroto-Valer, Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products, Appl. Energy, 113(2014) 515- 523.
  • Cardenas-Escudero, V. Morales- Florez, R. Perez- Lopez, A. Santos, L. Esquivias. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration, J. Hazard. Mater., 196(2011), 431-435.
  • Liu, L. Teng, S. Rohani, Z. Qin, B. Zhao, C. C. Xu, S. Ren, Q. Liu, B. Liang. CO2 mineral carbonation using industrial solid wastes: A review of recent developments, Chem. Eng. J., 416(2021) 129093-129100.
  • M. Elkanzi, M.F. Chalabi, Kinetics of the conversion of calcium sulfate to ammonium sulfate using ammonium carbonate aqueous solution, Ind. Eng. Chem. Res., 30 (1991), 1289-1293.
  • Bouargene M.G. Biyoune, A. Mabrouk, A. Bachar, B. Bakiz, H.A. Ahsaine, S. Billah, A. Atbir, Experimental investigation of the effects of synthesis parameters on the precipitation of calcium carbonate and portlandite from Moroccan phosphogypsum and pure gypsum using carbonation route, Waste Biomass Valor., 11(2020) 6953-6965..
  • Danielik, P. Fellner, J. Jurisova, M. Kralik, Determination of the reactivity of CaSO4.2H2O, Acta Chimica Slovaca, 9 (2016), 1-5..
  • K. Abbas, Study on the production of ammonium sulfate fertilizer from phosphogypsum, Eng. Tech. Journal, 29 (2011) 814-821
  • C. Burnett, M.K. Schultz, C.D. Hull, Radionuclide flow during the conversion of phosphogypsum to ammonium sulfate, J. Environ. Radioact., 32 (1996) 33-51
  • V. Vlasjan, N.D. Voloshin, A. B. Shestozub, Producing calcium nitrate and rare-earth element concentrates by phosphogypsum conversion, Chemine Technologija, 2 (2013) 58-62.
  • M. Blouin, O.W. Linigston, J. G. Getsinger, Bench-scale studies of sulfate recycle nitric phosphate process, J. Agric. Food Chem., 18 (1970) 313-318..
  • M. Chou, J.A. Bruinius, V. Benig, S.J. Chou, R.H. Carty, Producing ammonium sulfate from flue gas desulfurization by-products, Energy Sources, 27 (2006) 1061-1071.
  • P. Mattila, R. Zevenhoven, Mineral carbonation of phosphogypsum waste for production of useful carbonate and sulfate salts, Front. Energy Res., 3(2015) 48-54.
  • Azdarpour, R. Junin, M. Asadullah, H. Hamidi, M. Manan, A R. M. Daud. Calcium carbonate production through direct mineral carbon dioxide sequestration, Appl. Mech. Mater., 699(2015) 1020-1025.
  • Msila, D. G. Billing, W. Barnard, Capture and storage of CO2 into waste phosphogypsum: the modified Merseburg process, Techn. Environ. Policy, 18(2016), 2709-2715.
  • Q. Lu, P. Q. Lan, S. F. Wu, Preparation of nano CaCO3 from phosphogypsum by gas-liquid-solid reaction for CO2 sorption, Ind. Eng. Chem. Res., 55 (2016), 10172-10177.
  • T. Kandil, M. F. Cheira, H. S. Gado, M. H. Soliman, H. M. Akl, Ammonium sulfate preparation from phosphogypsum waste, J. Radiat. Res. Appl. Sci., 10 (2017), 24-33.
  • Idboufrade, B. Bouargane, B. Ennasraoui, M. G. Biyoune, A. Bachar, B. Bakiz, A. Atbir, S. M. Billah, Phosphogypsum two-step-ammonia-carbonation resulting in ammonium sulfate and calcium carbonate synthesis: Effect of the molar ratio OH-/Ca 2+ on the conversion process, Waste Biomass Valor., 93(2021) 1 - 5.