Removal of Gentian Violet by activated carbon from mango kernel shells (Adams)

Document Type : Research Article

Authors

Laboratoire des Procédés Industriels de Synthèse, de l’Environnement et des Energies Nouvelles (LAPISEN), Institut National Polytechnique Félix HOUPHOUËT-BOIGNY de Yamoussoukro, BP 1093 Yamoussoukro, Côte d’Ivoir

Abstract

This study aims to Gentian Violet (G.V) removal using activated carbon (AC). The AC was obtained by chemical activation of mango kernel shells (Adams) with potassium hydroxide (AC-BK), at 600°C and for 2h. AC-BK has been characterized by physico-chemical analyses such as: specific surface area, zero charge point pH, surface functions and morphology. With a specific surface area of 534 m2.g-1, AC-BK was used to remove Gentian Violet (G.V) in batch mode and under magnetic stirrer at 150 rpm. Thus, the effect of contact time, initial concentration, pH and temperature of the reaction medium was studied. The maximum abatement rate for G.V was 96.5 % at temperature of 25 °C and pH = 6. Among the models discussed, the Freundlich model seems to better reflect the elimination of G.V. by AC-BK with a coefficient of determination very close to 1 (R2 > 0.99). In addition, this reaction is well fitted by pseudo-second order kinetics with a regression coefficient of 0.99. The adsorption of G.V by AC-BK is characterized by a multilayer on the surface of the AC. These results suggest that AC-BK was effective in removing of G.V with a maximum adsorption capacity of 160. 10 mg.g-1 and could therefore be tested for the remediation of dye-laden industrial effluents.

Keywords

Main Subjects


  1. [1] N. Fayoud, S.A. Younssi, S. Tahiri, A. Albizane, Etude cinétique et thermodynamique de l’adsorption de bleu de méthylène sur les cendres de bois (Kinetic and thermodynamic study of the adsorption of methylene blue on wood ashes), J. Mater. Environ. Sci. 6 (2015) 3295–3306.

    [2] B.G.H. Briton, B.K. Yao, Y. Richardson, L. Duclaux, L. Reinert, Y. Soneda, Optimization by Using Response Surface Methodology of the Preparation from Plantain Spike of a Micro-/Mesoporous Activated Carbon Designed for Removal of Dyes in Aqueous Solution, Arabian Journal for Science and Engineering. 45 (2020) 7231–7245.

    [3] A. Oussalah, A. Boukerroui, A. Aichour, B. Djellouli, Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies, International Journal of Biological Macromolecules. 124 (2019) 854–862.

    [4] C. Telegang Chekem, Matériaux carbonés multifonctionnels à porosité contrôlée à partir des ressources végétales tropicales: application au traitement de l’eau par photocatalyse, (2017).

    [5] K. Nadeem, G.T. Guyer, B. Keskinler, N. Dizge, Investigation of segregated wastewater streams reusability with membrane process for textile industry, Journal of Cleaner Production. 228 (2019) 1437–1445.

    [6] Al Arsh Basheer, Chemical Chiral pollution: Impact on the Society and Science and need of the regulations in the 21st Century, 30(4) (2018), 402-406.

          DOI: 10.1002/chir.22808

    [7] N.M. Mahmoodi, B. Hayati, M. Arami, F. Mazaheri, Single and binary system dye removal from colored textile wastewater by a dendrimer as a polymeric nanoarchitecture: equilibrium and kinetics, Journal of Chemical & Engineering Data. 55 (2010) 4660–4668.

    [8] J. Ano, A.S. Assémian, Y.A. Yobouet, K. Adouby, P. Drogui, Electrochemical removal of phosphate from synthetic effluent: a comparative study between iron and aluminum by using experimental design methodology, Process Safety and Environmental Protection. 129 (2019) 184–195.

    [9] J. Zhu, J. Li, Y. Li, J. Guo, X. Yu, L. Peng, B. Han, Y. Zhu, Y. Zhang, Adsorption of phosphate and photodegradation of cationic dyes with BiOI in phosphate-cationic dye binary system, Separation and Purification Technology. 223 (2019) 196–202.

    [10] S. Ortiz-Monsalve, J. Dornelles, E. Poll, M. Ramirez-Castrillon, P. Valente, M. Gutterres, Biodecolourisation and biodegradation of leather dyes by a native isolate of Trametes villosa, Process Safety and Environmental Protection. 109 (2017) 437–451.

    [11] S. Wong, H.H. Tumari, N. Ngadi, N.B. Mohamed, O. Hassan, R. Mat, N.A.S. Amin, Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL), Journal of Cleaner Production. 206 (2019) 394–406.

    [12] Ali Imran, Gupta Vinod K., Aboul-Enein  Hassan Y., Review Metal ion speciation and capillary electrophoresis, Electrophoresis 26 (2005), 3988–4002 DOI 10.1002/elps.200500216

    [13] Ali, Imran Babkin, Alexander V. Burakova, Irina V. Burakov, Alexander E. Neskoromnaya, Elena A. Tkachev, Alexey G. Panglisch, Stefan Almasoud, Najla Alomar, Taghrid S.  https://doi.org/10.1016/j.molliq.2021.115584

    [14] Imran Ali, Omar M. L. Alharbi, Zeid A. ALOthman, Abdulrahman Alwarthan, Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water, International Journal of Biological Macromolecules,132 (2019), 244-253.

    [15] I. Ali, A. E. Burakov, A. V. Melezhik, A. V. Babkin,

    1. V. Burakova, Ms. E. A. Neskomornaya, E. V. Galunin, A. G. Tkachev, and D. V. Kuznetsov, Removal of Copper (II) and Zinc (II) Ions in Water on a Newly Synthesized Polyhydroquinone/Graphene Nanocomposite Material: Kinetics, Thermodynamics and Mechanism. Chemistry Select. (2019), (4), 12708-12718.            

           DOI: 10.1002/slct.201902657

    [16] Al Arsh Basheer, Advances in the smart materials  applications in the aerospace industries, Aircraft Engineering and Aerospace Technology, 92(7), 1027-1035

          DOI 10.1108/AEAT-02-2020-0040

    [17] I. V. Burakova, A. E. Burakov, A. G. Tkachev, I. D. Troshkina, O. A. Veselova, A. V. Babkin, Wei Moe Aung, I. Ali, Kinetics of the adsorption of scandium and cerium ions in sulfuric acid solutions on a nanomodified activated carbon, Journal of Molecular Liquids 253 (2018), 277-283

          https://doi.org/10.1016/j.molliq.2018.01.063

          https://doi.org/10.1016/j.ijbiomac.2019.03.211

    [18] I. Ali, E. A. Zakharchenko, G. V. Myasoedova, N. P. Molochnikova, A. A. Rodionova, V. E. Baulin, A. E. Burakov, I. V. Burakova, A.V. Babkin, E. A. Neskoromnaya, A. V. Melezhik, A. G. Tkachev, M. A. Habila, A. El-Marghany, M. Sheikh, A. Ghfar, Preparation and characterization of oxidized graphene for actinides and rare earth elements removal in nitric acid solutions from nuclear wastes,

        Journal of Molecular Liquids, 335 (2021) 116260. https://doi.org/10.1016/j.molliq.2021.116260

    [19] K. Belaid, S. Kacha, Étude cinétique et thermodynamique de l’adsorption d’un colorant basique sur la sciure de bois, Revue Des Sciences de l’eau/Journal of Water Science. 24 (2011) 131–144.

    [20] H. Pekkuz, I. Uzun, F. Güzel, Kinetics and thermodynamics of the adsorption of some dyestuffs from aqueous solution by poplar sawdust, Bioresource Technology. 99 (2008) 2009–2017.

    [21] T. Abdoulaye, S. Souleymane, K.M. Liliane, T.C. Drissa, Z.A. Fabrice, S. Yadé, Morphological and Physicochemical Parameters of Three Mango (Mangifera Indica L) Varieties Exported In North of Ivory Coast, (2020).

    [22] A. Bongoua-Devisme, E. Bolou Bi, K. Kassin, C. Balland-Bolou-Bi, Y. Gueable, B. Adiaffi, A. Yao-Kouame, E. Djagoua, Assessment of heavy metal contamination degree of municipal open-air dumpsite on surrounding soils: Case of dumpsite of Bonoua, Ivory Coast, International Journal of Engineering Research and General Science. 6 (2018). https://hal.archives-ouvertes.fr/hal-01891039 (accessed July 15, 2020).

    [23] C. Alawa, I. Tripathi, M. Dwivedi, Adsorption of Crystal Violet Dye from Wastewater by Zeolite Synthesized from Coal Fly Ash, Adsorption. (2018).

    [24] N. Wibowo, L. Setyadhi, D. Wibowo, J. Setiawan, S. Ismadji, Adsorption of benzene and toluene from aqueous solutions onto activated carbon and its acid and heat treated forms: influence of surface chemistry on adsorption, Journal of Hazardous Materials. 146 (2007) 237–242.

    [25] H. Koné, A.S. Assémian, T. Tiho, K. Adouby, K.B. Yao, P. Drogui, Borassus aethiopum activated carbon prepared for nitrate ions removal, Journal of Applied Water Engineering and Research. (2021) 1–14.

    [26] Y. Kan, Q. Yue, D. Li, Y. Wu, B. Gao, Preparation and characterization of activated carbons from waste tea by H3PO4 activation in different atmospheres for oxytetracycline removal, Journal of the Taiwan Institute of Chemical Engineers. 71 (2017) 494–500.

    [27] A. Zubrik, M. Matik, S. Hredzák, M. Lovás, Z. Danková, M. Kováčová, J. Briančin, Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis, Journal of Cleaner Production. 143 (2017) 643–653.

    [28] H. Sun, S. Liu, G. Zhou, H.M. Ang, M.O. Tadé, S. Wang, Reduced graphene oxide for catalytic oxidation of aqueous organic pollutants, ACS Applied Materials & Interfaces. 4 (2012) 5466–5471.

    [29] A.K. Shakya, R. Bhande, P.K. Ghosh, A practical approach on reuse of drinking water treatment plant residuals for fluoride removal, Environmental Technology. 41 (2020) 2907–2919.

    [30] C.K. Balogoun, M.L. Bawa, S. Osseni, M. Aina, Préparation des charbons actifs par voie chimique à l’acide phosphorique à base de coque de noix de coco, International Journal of Biological and Chemical Sciences. 9 (2015) 563–580.

    [31] M. Gueye, J. Blin, C. Brunschwig, Etude de la synthèse des charbons actifs à partir de biomasses locales par activation chimique avec H3PO4, (2011) 6.

    [32] H. Koné, K.E. Kouassi, A.T.S. Konan, K. Adouby, K.B. Yao, Thermal regeneration of activated carbon saturated with nitrate ions from an artisanal furnace, International Journal of Advanced Engineering, Management and Science (IJAEMS). (2020).

    [33] M. Daouda, Méthodologie et résultats du diagnostic de l’eutrophisation du lac Nokoué (Benin), (2010).

    [34] M. Toor, B. Jin, Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye, Chemical Engineering Journal. 187 (2012) 79–88.

    [35] A. Konan, R. Richard, C. Andriantsiferana, K. Yao, M. Manero, Recovery of borassus palm tree and bamboo waste into activated carbon: application to the phenolic compound removal, J. Mater. Environ. Sci. 11 (2020) 1584–1598.

    [36] S. Bentahar, A. Dbik, M. El Khomri, N. El Messaoudi, A. Lacherai, Adsorption of methylene blue, crystal violet and congo red from binary and ternary systems with natural clay: Kinetic, isotherm, and thermodynamic, Journal of Environmental Chemical Engineering. 5 (2017) 5921–5932.

    [37] X. Jin, B. Yu, Z. Chen, J.M. Arocena, R.W. Thring, Adsorption of Orange II dye in aqueous solution onto surfactant-coated zeolite: characterization, kinetic and thermodynamic studies, Journal of Colloid and Interface Science. 435 (2014) 15–20.

    [38] E. Kusumastuti, S. Santosa, Adsorption of crystal violet dye using zeolite a synthesized from coal fly ash, in: IOP Publishing, 2017: p. 012028.

    [39] S. Aziri, Utilisation des déchets agro-industriels pour l’élimination du chrome hexavalent en solution aqueuse, (2018).

    [40] M. Moyo, L. Chikazaza, B.C. Nyamunda, U. Guyo, Adsorption batch studies on the removal of Pb (II) using maize tassel based activated carbon, Journal of Chemistry. 2013 (2013).

    [41] S.K. Bozbaş, Y. Boz, Low-cost biosorbent: Anadara inaequivalvis shells for removal of Pb (II) and Cu (II) from aqueous solution, Process Safety and Environmental Protection. 103 (2016) 144–152.

    [42] Y. Miyah, A. Lahrichi, M. Idrissi, S. Boujraf, H. Taouda, F. Zerrouq, Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite, Journal of the Association of Arab Universities for Basic and Applied Sciences. 23 (2017) 20–28.

    [43] M. Jamshidi, M. Ghaedi, K. Dashtian, A. Ghaedi, S. Hajati, A. Goudarzi, E. Alipanahpour, Highly efficient simultaneous ultrasonic assisted adsorption of brilliant green and eosin B onto ZnS nanoparticles loaded activated carbon: artificial neural network modeling and central composite design optimization, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 153 (2016) 257–267.

    [44] T. Ngulube, J.R. Gumbo, V. Masindi, A. Maity, An update on synthetic dyes adsorption onto clay based minerals: A state-of-art review, Journal of Environmental Management. 191 (2017) 35–57.

    [45] V.V. Gedam, P. Raut, A. Chahande, P. Pathak, Kinetic, thermodynamics and equilibrium studies on the removal of Congo red dye using activated teak leaf powder, Applied Water Science. 9 (2019) 1–13.

    [46] S. Senthilkumaar, P. Kalaamani, C. V Subburaam, Liquid phase adsorption of Crystal violet onto activated carbons derived from male flowers of coconut tree, Journal of Hazardous Materials. 136 (2006) 800–808. https://doi.org/10.1016/j.jhazmat.2006.01.045.

    [47] B.H. Hameed, Equilibrium and kinetic studies of methyl violet sorption by agricultural waste, Journal of Hazardous Materials. 154 (2008) 204–212. https://doi.org/10.1016/j.jhazmat.2007.10.010.

    [48] W. Fortas, A. Djelad, M.A. Hasnaoui, M. Sassi, A. Bengueddach, Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method Adsorption of gentian violet dyes in aqueous solution on microporous AlPOs molecular sieves synthesized by ionothermal method, Materials Research Express. 5 (2018). https://doi.org/10.1088/2053-1591/aaaac2.

    [49] Jumaeri, E. Kusumastuti, S.J. Santosa, Sutarno, Adsorption of Crystal Violet Dye Using Zeolite A Synthesized From Coal Fly Ash, Materials Science and Engineering. 172 (2017). https://doi.org/10.1088/1757-899X/172/1/012028.

    [50] T.C.R. Bertolini, J.C. Izidoro, C.P. Magdalena, D.A. Fungaro, Full Paper Adsorption of Crystal Violet Dye from Aqueous Solution onto Zeolites from Coal Fly and Bottom Ashes, The Electronic Journal of Chemistry. 5 (2013).

    [51] C. Alawa, Adsorption of Crystal Violet Dye from Wastewater by Zeolite Synthesized from Coal Fly Ash, 5 (2018) 617–627.