Molecular Docking and In-silico Pharmacokinetic Investigations towards Designing Multi-target Potent Dengue Virus Inhibitors with enhanced Pharmacokinetic Profile

Document Type : Research Article


1 Department of Pure and Applied Chemistry, Faculty of Science, University of Maiduguri, Borno State, Nigeria.

2 Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Kaduna State, Nigeria.



The widespread of dengue infection globally has become a great source of concern especially to developing countries with limited resources to control the spread of the dengue virus vector as such infection characterized by fever, joint pain, etc. may progress to a fatal phase such as dengue hemorrhagic fever and organ failure or dengue shock syndrome. An in-silico method using the DFT approach was employed for the geometric optimisation of phthalazinone derivatives with previously established interaction with NS2B-NS3 protease of dengue virus. Herein, molecular docking was employed to evaluate their biochemical interactions with dengue virus serotype 2 protease NS-5 as multi-target. Likewise, the ADME/PK property of the studied compounds was investigated. The molecular docking calculation showed that the previously reported compound 21 with the best potency against NS2B-NS3 protease had the best docking score of -9.0 kcal/mol against NS-5 protease. The physicochemical and ADME/PK properties result revealed that these compounds are orally bioavailable with high gastrointestinal absorption, and are all inhibitors of CYP-3A4 and CYP-2D6 except compound 7 which is a non-inhibitor of CYP-2D6. Also, all the compounds are substrates of P-glycoprotein. The information derived from this study can be utilized in the drug discovery process to improve the anti-dengue activity of the studied compounds. This study would provide physicochemical and pharmacokinetics properties required for the identification of potent anti-dengue drugs and other relevant information in drug discovery.


Main Subjects

[1]           M. G. Guzman, M.  Alvarez and S. B. Halstead, Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection. Archives of virology 158(7) (2013) 1445-59.
[2]           Philippines declares epidemic after dengue fever kills more than 600, World news the Guardian. Accessed 07, August 2019.
[3]           J. A. Ayukekbong, O. G. Oyero, S. E. Nnukwu, H. N. Mesumbe, C. N. Fobisong, Value of routine dengue diagnosis in endemic countries. World journal of virology, 6(1) (2017) 9.
[4]           K. S. Vannice, A. Wilder-Smith, A. D. Barrett, K Carrijo, M. Cavaleri, A. de Silva, A. P. Durbin, T. Endy, E. Harris, B. L. Innis, and L. C. Katzelnick, Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines. Vaccine 36(24) (2018) 3411-3417.
[5]           A. L. Rothman, C. L.  Medin, H. Friberg and J. R. Currier, Immunopathogenesis versus protection in dengue virus infections. Current tropical medicine reports, 1(1) (2014) 13-20.
[6]           Y. Yao, T.  Huo, Y. L. Lin, S.  Nie, F. Wu, Y. Hua, J. Wu, A. R. Kneubehl, M. B. Vogt, R. Rico-Hesse and Y. Song, Discovery, X-ray crystallography and antiviral activity of allosteric inhibitors of flavivirus NS2B-NS3 protease. Journal of the American Chemical Society, 141(17) (2019) 6832-6836.
[7]           H. Malet, N. Massé, B. Selisko, J. L. Romette, K. Alvarez, J. C. Guillemot, H. Tolou, T. L. Yap, S. G. Vasudevan, J.  Lescar and Canard, The flavivirus polymerase as a target for drug discovery. Antiviral research, 80(1) (2008) 23-35.
[8]           S. P. Lim, Dengue drug discovery: Progress, challenges and outlook. Antiviral Research, 163(2019) 156-78.
[9]           S. P. Lim, C. G. Noble and P. Y.  Shi, The dengue virus NS5 protein as a target for drug discovery. Antiviral research, 119 (2015) 57-67.
[10]         C. G. Noble, Y. L. Chen, H. Dong, F. Gu, S. P. Lim, W. Schul, Q. Y. Wang and P. Y. Shi Strategies for development of dengue virus inhibitors. Antiviral research, 85(3) (2010) 450-62.
[11]         G. R. Medigeshi, R. Kumar, E. Dhamija, T. Agrawal and M. Kar, N-Desmethylclozapine, fluoxetine, and salmeterol inhibit postentry stages of the dengue virus life cycle. Antimicrobial agents and chemotherapy, 60(11) (2016) 6709-18.
[12]         C. Nitsche, S. Holloway, T. Schirmeister and C. D. Klein, Biochemistry and medicinal chemistry of the dengue virus protease. Chemical reviews, 114(22) (2014) 11348-81.
[13]         J. Joubert, E. B. Foxen and S. F. Malan, Microwave Optimized Synthesis of N-(adamantan-1-yl)-4-[(adamantan-1-yl)-sulfamoyl] benzamide and Its Derivatives for Anti-Dengue Virus Activity. Molecules, 23(7) (2018) 1678.
[14]         C. Nitsche, L.  Zhang, L. F. Weigel, J. Schilz, D. Graf, R. Bartenschlager, R. Hilgenfeld, C. D. Klein, Peptide–boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. Journal of medicinal chemistry, 60(1) (2017) 511-6.
[15]         J. C. Madden, M. T. Cronin, Structure-based methods for the prediction of drug metabolism. Expert opinion on drug metabolism & toxicology, 2(4) (2006) 545-57.
[16]         D. Lu, J. Liu, Y.  Zhang, F. Liu, L. Zeng, R. Peng, L. Yang, H. Ying, W. Tang, W. Chen, J. Zuo, Discovery and optimization of phthalazinone derivatives as a new class of potent dengue virus inhibitors. European Journal of Medicinal Chemistry, 145 (2018) 328-37.
[17]       W. J. Hehre and W. W.  Huang, Chemistry with computation: an introduction to SPARTAN. Wavefunction. Inc, Irvine (1995).
[18]         O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2) (2010) 455-46.
[19]         A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports 7 (2017) 42717.
[20]         C. H. Tseng, C. K. Lin, Y. L. Chen, C. Y. Hsu, H. N. Wu, C. K.Tseng and J. C. Lee, Synthesis, antiproliferative and anti-dengue virus evaluations of 2-aroyl-3-arylquinoline derivatives. European Journal of Medicinal Chemistry 79 (2018) 66-76.
[21]         J. C. Lee, C. K. Tseng, C. K. Lin, and C. H. Tseng, Discovery of novel diarylpyrazolylquinoline derivatives as potent anti-dengue virus agents. European Journal of Medicinal Chemistry, 141(2017) 282-92.
[22]        S. N. Adawara, G. A. Shallangwa, P. A. Mamza and A. Ibrahim, Molecular docking and QSAR theoretical model for prediction of phthalazinone derivatives as new class of potent dengue virus inhibitors. Beni-Suef University Journal of Basic and Applied Sciences9(1) (2020) 1-17.
[23]        S. Tian, J. Wang, Li Y, D. Li, L. Xu and T. Hou, The application of in silico drug-likeness predictions in pharmaceutical research. Advanced drug delivery reviews, 86 (2015) 2-10.
[24]         S. A. Siadati, N.  Nami and M. R. Zardoost, A DFT Study of Solvent Effects on the Cycloaddition of Norbornadiene and 3, 4–Dihydroisoquinoline-N-Oxide. Progress in Reaction Kinetics and Mechanism36(3) (2011) 252-258.
[25]         M. R. Zardoost and S. A. Siadati, A DFT study on the effect of functional groups on the formation kinetics of 1, 2, 3-triazolo-1, 4-benzoxazine via intramolecular 1, 3-dipolar cycloaddition. Progress in Reaction Kinetics and Mechanism38(2) (2013) 191-196.
[26]         M. R Zardoost, S. A.  Siadati, B. G. and Oghani, A DFT study on the 1, 3-dipolar cycloaddition of benzonitrile oxide and N-ethylmaleimide. Progress in Reaction Kinetics and Mechanism38(3) (2013) 316-322.
[27]         C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3) (1997) 3-25.
[28]         D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, Molecular properties that influence the oral bioavailability of drug candidates. Journal of medicinal chemistry 45(12) (2002) 2615-23.
[29]         P. C. Trippier, selecting good ‘drug-like’ properties to optimize small molecule blood-brain barrier penetration. Current medicinal chemistry, 23(14) (2016) 1392-407.
[30]        D. J. Triggle and J. B. Taylor, Comprehensive Medicinal Chemistry II, vol. 7 (2006) (Elsevier, Amsterdam).
[31]         A. Daina and V. Zoete, A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMed-Chem, 11(11) (2016) 1117–1121.
[32]         F. Montanari, and G. F. Ecker, Prediction of drug–ABC-transporter interaction—Recent advances and future challenges. Advanced drug delivery reviews, 86 (2015) 17-26.
[33]         G. Szakács, A. Váradi, C. Özvegy-Laczka, and B. Sarkadi, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME–Tox). Drug discovery today, 13(9-10) (2008) 379-93.
[34]         K. Tsaioun and S. A. Kates, ADMET for medicinal chemists: a practical guide. John Wiley & Sons, (2011).
[35]         P. F. Hollenberg, Characteristics and common properties of inhibitors, inducers, and activators of CYP enzymes. Drug metabolism reviews, 34(1-2) (2002) 17-35.
[36]         S. M. Huang, J.M. Strong, L. Zhang, K. S. Reynolds, S. Nallani, R. Temple, S. Abraham, S. A. Habet, R. K. Baweja, G. J. Burckart and S. Chung, New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. The Journal of clinical pharmacology, 48(6) (2008) 662-70.
[37]         R. A.van Waterschoot and A. H. Schinkel, A critical analysis of the interplay between cytochrome P450 3A and P-glycoprotein: recent insights from knockout and transgenic mice. Pharmacological reviews, 63(2) (2011) 390-410