In Silico Adsorption of Lomustin anticancer drug on the surface of Boron Nitride nanotube

Document Type : Research Article


1 Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, College of Basic Sciences, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.

3 Department of Inorganic Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran


The present study aimed to assess the adsorption of Lomustin on the single-walled Boron Nitride nanotube which has been examined using Density Functional Theory (DFT), agent in a solvent phase (water) at the B3LYP/6-31G (d) theoretical level. Initially, the structures of Lomustin, Boron Nitride nanotube, and Lomustin complexes with Boron Nitride nanotubes were designed in Gauss View in three different conformers and were optimized geometrically, on which IR and frontier molecular orbital computations were carried out. Adsorption energy values, Gibbs free energy changes (ΔGad), adsorption enthalpy changes (ΔHad), and equilibrium thermodynamic constants were estimated. The results showed that adsorption process was spontaneous, exothermic and non-equilibrium. The values of specific heat capacity and adsorption enthalpy indicate that this nanostructure can be used to build new thermal sensors to measure Lomustin. The results of molecule orbitals estimations showed that energy gap, after drug absorption on the nanotube surface, decreased significantly and the values of chemical hardness and dipole moment were studied after the interaction of drug with adsorbent and the results showed that drug solubility and reactivity, after adsorption on Boron Nitride nanotubes, increased significantly. According to the obtained results for adsorption of Lomustin, this nanostructure can be used as a sensing material in building new electrochemical sensors to measure this drug.


Main Subjects

[1] B. Farhang Rik, R. Ranjineh Khojasteh, R. Ahmadi, M. Karegar Razi, Evaluation of C60 nano-structure performance as nano-carriers of procarbazine anti-cancer drug using density functional theory methods. Iran. Chem. Commun., 7 (2019) 405-414.
[2] N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem., 29 (2008) 839-845.
[3] R. Ahmadi, M. Pirahan-Foroush, Ab initio studies of
fullerene effect on chemical properties of naphazoline drop. Ann. Mil. Health. Sci. Res., 12 (2014) 86-90.
[4] M. R. Moeller, S. Steinmeyer, T.Kraemer, Determination of drugs of abuse in blood. J. Chromatogr. B., 713(1998) 91-109.
 [5] M. Eslami, M. Moradi, R. Moradi, Physica. E. LowDimens. Syst. Nanostruct, 87(2017) 186-191.
[6] R. Ahmadi, T.Boroushaki, M. Ezzati, Study on effect of addition of nicotine on nanofullerene structure C60 as a medicine nanocarrier. Orient. J. Chem., 28 (2012) 773-9.
 [7] T. Baciu, I. Botello, F. Borrull, M. Calull, C. Aguilar, Capillary electrophoresis and related techniques in the determinationof drugs of abuse and their metabolites. Trends Anal.Chem.,74(2015)89-108.
[8] J. Lenik, C. Wardak, Characteristic of a new sensor for indomethacin determination. Procedia. Eng., 47 (2012) 144-147.
[9] K. Vytras, The use of ion-selective electrodes in the determination of drug substances. J. Pharm. Biomed. Anal., 7(2002)789-812.
[10] S.Bashiri, E.Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum., 136 (2016) 156-162.
[11] nanotube Modeler J. Crystal. Soft., 2014 software.
[12] GaussView, Version 6.1, R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
[13] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[14] R. Ahmadi, M. R. Jalali Sarvestani, Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. Phys. Chem. B., 14 (2020) 198-208.
[15] M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study. Asian J. Nanosci. Mater., 3 (2020) 103-114.
[16] M. R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb, Quetiapine Adsorption on the Surface of Boron Nitride Nanocage (B12N12): A Computational Study. Int. J. New. Chem., 7 (2020) 87-100.
[17] M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory. Int. J. New. Chem., 4 (2017) 101-110.
[18] M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of Tetryl on the Surface of B12N12: A Comprehensive DFT Study. Chem. Methodol., 4 (2020) 40-54.
[19] S. Majedi, F. Behmagham, M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett., 1 (2020) 19-24.
[20] H. G. Rauf, S. Majedi, E. A. Mahmood, M. Sofi, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem. Rev. Lett., 2 (2019) 140-150.
[21] R. A. Mohamed, U. Adamu, U. Sani, S. A. Gideon, A. Yakub, Thermodynamics and kinetics of 1-fluoro-2-methoxypropane vs Bromine monoxide radical (BrO): A computational view. Chem. Rev. Lett., 2 (2019) 107-117.
[22] S. Majedi, H. G. Rauf, M. Boustanbakhsh, DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett., 2 (2019) 176-186.
[23] R. Moladoust, Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem. Rev. Lett., 2 (2019) 151-156.
[24] M.R.J.Sarvestani, R.Ahmadi, Trinitroanisole adsorption on the surface of boron nitride nanocluster (B12 N12): A computational study.  J Water Environ Nanotechnol.,           5(2020), pp. 34-44
[25] M.R.J.Sarvestani, R.Ahmadi, Determination of Mn2+ in pharmaceutical supplements by a novel coated graphite electrode based on zolpidem as a neutral ion carrier.Anal. Bioanal. Chem., 5(2018), pp. 273-284
[26] R.Ahmadi, , M.Ebrahimikia, Calculation of thermodynamic parameters of [2.4.6] three nitro toluene (TNT) with nanostructures of fullerene and boron nitride nano-cages over different temperatures, using density functional theoryPhys. Chem. Res., 5(2017) 617-627
[27] R.Ahmadi, , R.Soleymani, The influence of tyrozine on energetic property in graphene oxide: A DFT study        Orient J Chem., 30(2014) 57-62
[28] M.Kamaee, , R. Soleymani, , R.Ahmadi, Fereyduni, E.,The substitution effect on the aromaticity of some n-phenylacetamide derivatives: A DFT study. J Theor Comput Chem., 11(2012) 1331-1339              
[29] R.Ahmadi, R.Sollymani, , T.Yousofzad, Study on effect of addition of nicotine on nanofullerene structure c 60 as a medicine nano carrier. Orient J Chem., 28(2012) 773-779
[30] M.P.Foroush, , R.Ahmadi, , M.Yousefi, J.Najafpour,In Silico study of adsorption of penicillin antibiotic on the surface of single walled nitride boron nanotubes(SBNNT).  S. Afr. J. Chem. Eng., 37 (2021) 135-140
[31] M.Ahraminejad, R. Ghiasi, B.Mohtat, , R.Ahmadi,  Computational investigation of the substituent effect in the [2 + 4] Diels–Alder cycloaddition reactions of HSi≡Si(para-C6H4X) with benzene. J Chin Chem Soc., 68(2021) 806-816
[32]  R. Ghiasi, , M. Rahimi, , R.Ahmadi, Quantum-Chemical Investigation Of The Complexation Of Titanocene Dichloride With C20 And M +@C20 (M + = Li, Na, K) Cages.             J. Struct. Chem., 61(2020) 1681-1690
[33] E.S.Mirkamali, R.Ahmadi, dsorption of melphalan anticancer drug on the surface of boron nitride cage (B12N12): A comprehensive DFT study. J. Med. Chem. Sci., 3(2020) 199-207
[33]  H. Kalantary, M. Manoochehri, Fabrication and characterization of a novel magnetic MIL-101(Cr) nanocomposite for selective selenite removal. Int. J. New. Chem., 8(2021) 59-73.
[34] M.S.Nagar,Evaluating Commercial Macroporous Resin (D201) for Uranium Uptake in Static and Dynamic Fixed Bed Ion Exchange Column. Int. J. New. Chem., 7(2020) 150-168.
[35]  S.Kumer, M.Ebrahimikia, M.Yari, , TATB Interaction with Carbon Nanocone and Nanocone Sheet: A Comprehensive Computational Study. Int. J. New. Chem., 7(2020) 74-86.
[36]  Z.Sarikhani, M.Manoochehri, Removal of Toxic Cr(VI) Ions from Water Sample a Novel Magnetic Graphene Oxide Nanocomposite. Int. J. New. Chem., 7(2020) 30-46.
[37]  A. Mohasseb, Adsorption of Tetryl on the Surface of Carbon Nanocone: A Theoretical Investigation. Int. J. New. Chem., 6(2019)215-223.
[38]  R. Faramarzi, M.Falahati, M.Mirzaei, Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv J. Sci. Eng., 1(2020) 62-66.
[39]  M. Rezaei Sameti, S. Azadidoureh, The AIM, NBO Thermodynamic, and Quantum Study of the Interaction Nitramide Molecule with Pristine, B, As and B&As Doped of AlNNTs. Int. J. New. Chem., 6(2017) 109-132.
[40]   N.Parsafard, M. H.Peyrovi, Z.Mohammadian, Effect of Support Nature on Performance and Kinetics of Nickel Nanoparticles in Toluene Hydrogenation. Int. J. New. Chem., 6(2019) 23-33.
[41] L.Asgar, Surface Adsorption of Carbon Monoxide and Hydrogen Gases Mixed with Boron Nitride (7 ,7) Nanotubes by Monte Carlo Method, Int. J. New. Chem., 4(2017) 118-124.
[42] A. Salimian, S.Ketabi, J.Najafpour, Comparison of Doped Combination Zirconium-tungsten, Zirconium- molybdenum and Molybdenum-tungsten on Single-wall Vanadium Oxide Nanotube in Hydrogen Gas Adsorption. Int. J. New. Chem. 4(2017) 61-71.
[43] M. K.Karimi Raja, R.Ahmadi, Investigation of Adsorption Enthalpy of Prolin on the Surface of Graphene with and without Si: A DFT Study. Int. J. New. Chem., 2(2015) 50-54.
[44]   A.A.Salari, M.Ebrahimi kia, N.Ahmadaghaei, B.Dehdari, M.Noei, Pyrrole Detection by BeO Nanotube: DFT Studies. Int. J. New. Chem. 1(2014) 134-144.
[45] M. Noei, A. Moalla, Methyl Acetylene Detection by BN Nanotube: DFT Studies. Int. J. New. Chem., 1(2014) 99-107.
[46]  M.R. Jalali Sarvestani; N. Mert; E.Vessally,
Cross-dehydrogenative coupling of aldehydes with N-hydroxyimides: An efficient and straightforward route to N-hydroxyimides esters., 1(2020) 93-102.
[47]  M.R. Jalali Sarvestani,  Z. Doroudi, Fullerene (C20) as a potential sensor for thermal and electrochemical detection of amitriptyline: A DFT study, 1(2020) 63-68
[48]  M.R. Jalali Sarvestani,  S. Majedi , A DFT study on the interaction of alprazolam with fullerene (C20), 1(2020)  32-38.