Ginger intercalated sodium montmorillonite nano clay: assembly, characterization, and investigation antimicrobial properties

Document Type : Research Article


1 Polymer Department, Technical Faculty, South Tehran Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran, P.O. Box 41635-19141

3 Department of Biochemistry, Payame Noor University, Tehran, P.O. Box 19395-3697, Iran

4 Department of Chemistry, Payame Noor University (PNU), P.O. Box: 19395-4697, Tehran, Iran

5 Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran


In this work, we have successfully incorporated ginger particles into the sodium montmorillonite (Na+-MMT) structure. A new nanoparticles (G-MMT) were characterized using Fourier transform infrared (FT-IR) spectroscopy, ultraviolet-visible-near infrared (UV-VIS-NIR), X-ray diffraction analysis (XRD), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Also, the antimicrobial properties of G-MMT nanoparticles were investigated using agar diffusion method. The results showed that the spherical particles of ginger were placed between the layers, and also slightly on the surface. Montmorillonite (MMT) layers, such as heat shields, protect the ginger from degradation. The results of antibacterial test showed that G-MMT inhibits 8 lethal types of gram-positive and gram-negative bacteria, as well as one type of yeast. Due to the antibacterial properties of G-MMT and the fact that ginger is protected at high temperatures, this nanoparticle can have a suitable place in various applications.


Main Subjects

[1] R.A.  Sheldon, Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem. Eng., 6 (2018) 32-48.
[2] M. Jamzad and M.K. Bidkorpeh, Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J. Nanostructure Chem., 10 (2020) 193-201.
[3] A. Maleki, A.R. Akbarzade and A.R. Bhat, Green synthesis of polyhydroquinolines via MCR using Fe3O4/SiO2-OSO3H nanostructure catalyst and prediction of their pharmacological and biological activities by PASS. J. Nanostructure Chem., 7 (2017) 309-316.
[4] R.A. Sheldon, Green chemistry, catalysis and valorization of waste biomass. J. Mol. Catal. A Chem., 422 (2016) 3-12.
[5] E. Rostamizadeh, A. Iranbakhsh, A. Majd, S. Arbabian and I. Mehregan, Green synthesis of Fe2O3 nanoparticles using fruit extract of Cornus mas L. and its growth-promoting roles in Barley. J. Nanostructure Chem.,10 (2020) 125–130.
[6] Z. Khoshraftar, A. Shamel, A.A. Safekordi, M. Ardjmand and M. Zaefizadeh, Natural nanopesticides with origin of Plantago major seeds extract for Tribolium castaneum control. J. Nanostructure Chem., 10 (2020) 255-264.
[7] M. Sheydaei and E. Alinia-Ahandani, Cancer and the Role of Polymeric-Carriers in Diagnosis and Treatment. J Fasa Univ Med Sci., 10 (2020) 2408-2421.
[8] A. Michna, M. Morga, Z. Adamczyk and K. Kubiak, Monolayers of silver nanoparticles obtained by green synthesis on macrocation modified substrates. Mater. Chem. Phys., 227 (2019) 224-235.
[9] M. Edraki and M. Banimahd Keivani, Study on the optical and rheological properties of polymer-layered silicate nanocomposites. J. Phys. Theor. Chem. IAU Iran.,10 (2013) 69-79.
[10] G. Choudalakis and A.D. Gotsis, Permeability of polymer/clay nanocomposites: a review. Eur. Polym. J., 45 (2009) 967-984.
[11] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi and B. Delvaux, Halloysite clay minerals-a review. Clay Miner., 40 (2005) 383-426.
[12] Y. Park, G.A. Ayoko and R.L. Frost, Characterisation of organoclays and adsorption of p-nitrophenol: environmental application. J. Colloid Interface Sci., 360 (2011) 440-456.
[13] P. Singla, R. Mehta, and S.N. Upadhyay, Clay modification by the use of organic cations. Green Sustain. Chem., 2 (2012) 21-25.
[14] S. Pirsa, and L. Zhang, Preparation of biodegradable composite starch/tragacanth gum/Nanoclay film and study of its physicochemical and mechanical properties. Chem Rev Lett., 3 (2020) 98-106.
[15] A.A. Azeez, K.Y. Rhee, S.J. Park and D. Hui, Epoxy clay nanocomposites–processing, properties and applications: A review. Compos. Part B Eng., 45 (2013) 308-320.
[16] X. Yang, A. Shen, Y. Guo, H. Wu and H. Wang, A review of nano layered silicate technologies applied to asphalt materials. Road Mater Pavement Des., 2020, doi:10.1080/14680629.2020.1713199.
 [17] O.M. Sanusi, A. Benelfellah and N.A. Hocine, Clays and carbon nanotubes as hybrid nanofillers in thermoplastic-based nanocomposites–A review. Appl. Clay Sci., 185 (2020) 105408.
[18] B. Liu, X. Wang, B. Yang and R. Sun, Rapid modification of montmorillonite with novel cationic Gemini surfactants and its adsorption for methyl orange. Mater. Chem. Phys.,130 (2011) 1220-1226.
[19] Q. Zhou, S. Deng, Q. Yu, Q. Zhang, G. Yu, J. Huang and H. He, Sorption of perfluorooctane sulfonate on organo-montmorillonites. Chemosphere., 78 (2010) 688-694.
[20] R.R. Tiwari, K.C. Khilar and U. Natarajan, Synthesis and characterization of novel organo-montmorillonites. Appl. Clay Sci., 38 (2008) 203-208.
[21] P. Wu, Y. Dai, H. Long, N. Zhu, P. Li, J. Wu and Z. Dang, Characterization of organo-montmorillonites and comparison for Sr (II) removal: equilibrium and kinetic studies. Chem. Eng. J., 191 (2012) 288-296.
[22] M. Edraki and D. Zaarei, Azole derivatives embedded in montmorillonite clay nanocarriers as corrosion inhibitors of mild steel. Int. J. Miner. Metall. Mater., 26 (2019) 86-97.
[23] M. Edraki and D. Zaarei, Evaluation of the anti-corrosion effect of clay based nanopigments modified with organic azole compounds. Adv. Mater. New Coat., 6 (2018) 1641-1654
[24] M.A. Melia, S.J. Percival, S. Qin, E. Barrick, E. Spoerke, J. Grunlan and E.J.  Schindelholz, Influence of Clay size on corrosion protection by Clay nanocomposite thin films. Prog. Org. Coatings., 140 (2020) 105489.
[25] E. Alinia-Ahandani, Z. Alizadeh-Terepoei, M. Sheydaei and F. Peysepar-Balalami, Assessment of soil on some heavy metals and its pollution in Roodsar-Iran. Biomed J Sci & Tech Res., 28 (2020) 21977-21979.
[26] M. Qu, M. Xue, M. Yuan, J. He, A. Abbas, Y. Zhao, J. Wang, X. Liu and J. He, Fabrication of fluorine-free superhydrophobic coatings from montmorillonite with mechanical durability and chemical stability, J. Coatings Technol. Res., 16 (2019) 1043-1053.
[27] M. Edraki, M. Sheydaei, E. Alinia-Ahandani and E. Nezhadghaffar-Borhani, Polyvinyl chloride: chemical modification and investigation of structural and thermal properties. J. Sulfur Chem., 2021,1-13. DOI: 10.1080/17415993.2021.1895996 .
[28] M. Dabbaghianamiri, M.D. El-shazly and G.W. Beall, Self-Assembled Montmorillonite Clay-Poly Vinyl Alcohol Nanocomposite as a safe and Efficient Gas Barrier. Results Mater., 7 (2020)  100101.
[29] S. Jayrajsinh, G. Shankar, Y.K. Agrawal and L. Bakre, Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J. Drug Deliv. Sci. Technol., 39 (2017) 200-209.
[30] J.T. Seil and T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine., 7 (2012) 2767-2781.
[31] G.H. Cassell and J. Mekalanos, Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance. Jama., 285 (2001) 601-605.
[32] M. Thukkaram, S. Sitaram and G. Subbiahdoss, Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. Int. J. Biomater., (2014), doi: 10.1155/2014/716080
[33] P. Durão, R. Balbontín and I. Gordo, Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol., 26 (2018) 677-691.
[34] M. Sheydaei and E. Alinia-Ahandani, Cancer and Polymeric-Carriers. Biomed J Sci & Tech Res., 31 (2020) 24107-24110.
[35] E. Alinia-Ahandani and M. Sheydaei, Overview of the Introduction to the New Coronavirus (Covid19): A Review. J Med Biol Sci Res., 6 (2020) 14- 20.
[36] F.J. Álvarez-Martínez, E. Barrajón-Catalán, J.A. Encinar, J.C. Rodríguez-Díaz and V. Micol, Antimicrobial capacity of plant polyphenols against gram-positive bacteria: A comprehensive review. Curr. Med. Chem., 27 (2020) 2576-2606.
[37] E. Alinia-Ahandani, M. Sheydaei, B. Shirani-Bidabadi and Z. Alizadeh-Terepoei, Some effective medicinal plants on cardiovascular diseaaes in Iran-a review. J Glob Trends Pharm Sci., 11 (2020) 8021-8033.
[38] E. Alinia-Ahandani, Z. Alizadeh-Terepoei and M. Sheydaei, Some Pointed Medicinal Plants to Treat the Tick-Borne Disease. Open Access J. Biog. Sci. Res., 1 (2020) 1-3.
[39] H.A. Hasan, A.M.R. Raauf, B.M.A. Razik and B.A.R. Hassan, Chemical composition and antimicrobial activity of the crude extracts isolated from Zingiber officinale by different solvents. Pharm. Anal. Acta., 3 (2012) 1-5.
[40] R. Grzanna, L. Lindmark and C.G.  Frondoza, Ginger-an herbal medicinal product with broad anti-inflammatory actions. J. Med. Food., 8 (2005) 125-132.
[41] E. Langner, S. Greifenberg and J. Gruenwald, Zencefil: tarihçesi ve kullanımı. Adv. Ther., 15 (1998) 25-44.
[42] Y. Shukla and M. Singh, Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol., 45 (2007) 683-690.
[43] Q.Q. Mao, X.Y. Xu, S.Y. Cao, R.Y. Gan, H. Corke and H.B. Li, Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods., 8 (2019) 185.
[44] G.A. Avci, E. Avci, G.O. Cilak and S.C. Cevher, Antimicrobial and Antioxidant Activities of Zingiber officinale (Ginger) and Alpinia officinarum (Galangal). Hittite J. Sci. Eng. (2020) 45-49.
[45] M. Edraki and D. Zaarei, Modification of montmorillonite clay with 2-mercaptobenzimidazole and investigation of their antimicrobial properties. Asian J. Green Chem., 2 (2018) 189-200.
[46] M. Edraki and D. Zaarei, Evaluation of thermal and antimicrobial behavior of Montmorillonite nanoclay modified with 2-Mercaptobenzothiazole. J Nanoanalysis., 5 (2018) 26-35.
[47] B.D Mistry B.D, A Handbook of Spectroscopic Data Chemistry. Oxford Book Company: Jaipur. (2009).
[48] M. Sheydaei, S. Talebi and M. Salami-Kalajahi, Synthesis of ethylene dichloride-based polysulfide polymers: investigation of polymerization yield and effect of sulfur content on solubility and flexibility. J. Sulfur Chem., 42 (2021) 67-82.
[49] M. Sheydaei, S. Talebi and M. Salami-Kalajahi, Synthesis, characterization, curing, thermophysical and mechanical properties of ethylene dichloride-based polysulfide polymers. J. Macromol. Sci. Part A Pure Appl. Chem., (2020) 1-9. DOI: 10.1080/10601325.2020.1857267.
[50] J.C. de Almeida, A. de Barros, I.O. Mazali and M. Ferreira, Influence of gold nanostructures incorporated into sodium montmorillonite clay based on LbL films for detection of metal traces ions. Appl. Surf. Sci., 507 (2020) 144972.
[51] X. Zhao, H. Zhu, J. Chen and Q. Ao, FTIR, XRD and SEM analysis of ginger powders with different size. J. Food Process. Preserv., 39 (2015) 2017-2026.
[52] M. Sheydaei, M. Edraki, E. Alinia-Ahandani, E.O. Moradi Rufchahi and P. Ghiasvandnia, Poly(p-xylene disulfide) and poly(p-xylene tetrasulfide): synthesis, cure and investigation of mechanical and thermophysical properties. J. Macromol. Sci. Part A Pure Appl. Chem., 58 (2021) 52-58.
[53] M. Sheydaei, M. Edraki, S. Javanbakht, E. Alinia-Ahandani, M. Soleimani and A. Zerafatkhah, Poly(butylene disulfide) and poly(butylene tetrasulfide): Synthesis, cure and investigation of polymerization yield and effect of sulfur content on mechanical and thermophysical properties. Phosphorus Sulfur Silicon Relat. Elem., (2021) 1-7. DOI: 10.1080/10426507.2021.1872076.
[54] N. Baildya and A.P. Chattopadhyay, Theoretical Study of Electronic Properties of few Variants of Gingerol, a Group of Biologically Active Compounds. Adv. Phys. Theor. Appl., 34 (2014) 40-50.
[55] S. Nikafshar, O. Zabihi, Y. Moradi, M. Ahmadi, S. Amiri, and M. Naebe, Catalyzed synthesis and characterization of a novel lignin-based curing agent for the curing of high-performance epoxy resin. Polymers (Basel)., 9 (2017) 266.
[56] C. Zhang, H. Wu and M.R.  Kessler, High bio-content polyurethane composites with urethane modified lignin as filler. Polymer (Guildf)., 69 (2015) 52-57.
[57] R. Muthuraj, A.R. Horrocks and B.K. Kandola, Hydroxypropyl-modified and organosolv lignin/bio-based polyamide blend filaments as carbon fibre precursors. J. Mater. Sci., 55 (2020) 7066-7083.
[58] S. Shankar, N. Tanomrod, S. Rawdkuen and J.W.  Rhim, Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int. J. Biol. Macromol., 92 (2016) 842-849.
[59] P. Hong, Q. Luo, R. Ruan, J. Zhang and Y. Liu, Structural features of lignin and lignin-carbohydrate complexes from bamboo (Phyllostachys pubescens Mazel). Bioresources.,9 (2014) 1276-1289.
[60] A.K. Kumar, B.S. Parikh and M. Pravakar, Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res., 23 (2016) 9265-9275.
[61] A. Bos, The UV spectra of cellulose and some model compounds. J. Appl. Polym. Sci., 16 (1972) 2567-2576.
[62] M. Izadi, T. Shahrabi, I. Mohammadi and B. Ramezanzadeh, Synthesis of impregnated Na+-montmorillonite as an eco-friendly inhibitive carrier and its subsequent protective effect on silane coated mild steel. Prog. Org. Coatings., 135 (2019) 135-147.
[63] B.M. Naveena, S.K.  Mendiratta, Tenderisation of spent hen meat using ginger extract. Br. Poult. Sci., 42 (2001) 344-349.
[64] M.A. Bagherinia, M. Sheydaei and M. Giahi, Graphene oxide as a compatibilizer for polyvinyl chloride/rice straw composites. J. Polym. Eng., 37 (2017) 661-670.
[65] X. Zhao, Q. Ao, F. Du, J. Zhu and J. Liu, Surface characterization of ginger powder examined by X-ray photoelectron spectroscopy and scanning electron microscopy. Colloids Surfaces B Biointerfaces., 79 (2010) 494-500.
[66] S.S. Mohtar, T.N.Z.T.M. Busu, A.M.M. Noor, N. Shaari and H. Mat, An ionic liquid treatment and fractionation of cellulose, hemicellulose and lignin from oil palm empty fruit bunch. Carbohydr. Polym., 166 (2017) 291-299.
[67] A. Ghazi, E. Ghasemi, M. Mahdavian, B. Ramezanzadeh and M. Rostami, The application of benzimidazole and zinc cations intercalated sodium montmorillonite as smart ion exchange inhibiting pigments in the epoxy ester coating. Corros. Sci., 94 (2015) 207-217.
[68] V. Marchante, A. Marcilla, V. Benavente, F.M. Martínez‐Verdú and M.I.  Beltran, Linear low‐density polyethylene colored with a nanoclay‐based pigment: Morphology and mechanical, thermal, and colorimetric properties. J. Appl. Polym. Sci., 129 (2013) 2716-2726.
[69] V. Marchante, V. Benavente, A. Marcilla, F.M. Martínez‐Verdú and M.I.  Beltrán, Ethylene vinyl acetate/nanoclay‐based pigment composites: Morphology, rheology, and mechanical, thermal, and colorimetric properties. J. Appl. Polym. Sci., 130 (2013) 2987-2994.
[70] S. Raha, N. Quazi, I. Ivanov and S. Bhattacharya, Dye/Clay intercalated nanopigments using commercially available non-ionic dye. Dye. Pigment. 93 (2012) 1512-1518.
[71] M.I. Beltrán, V. Benavente, V. Marchante, H. Dema and A. Marcilla, Characterisation of montmorillonites simultaneously modified with an organic dye and an ammonium salt at different dye/salt ratios. Properties of these modified montmorillonites EVA nanocomposites. Appl. Clay Sci., 97 (2014) 43-52.
[72] T.A.D. Colman, I.M. Demiate and E. Schnitzler, The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J. Therm. Anal. Calorim., 115 (2014) 2245-2252.
[73] X.L. Cheng, Q. Liu, Y.B. Peng, L.W. Qi and P. Li, Steamed ginger (Zingiber officinale): Changed chemical profile and increased anticancer potential. Food Chem., 129 (2011) 1785-1792.
[74] M.C. Mesomo, M.L. Corazza, P.M. Ndiaye, O.R. Dalla Santa, L. Cardozo and A. de Paula Scheer, Supercritical CO2 extracts and essential oil of ginger (Zingiber officinale R.): Chemical composition and antibacterial activity. J. Supercrit. Fluids., 80 (2013) 44-49.
[75] J.C. Hedges, C.A. Singer and W.T.  Gerthoffer, Mitogen-activated protein kinases regulate cytokine gene expression in human airway myocytes. Am. J. Respir. Cell Mol. Biol., 23 (2000) 86-94.
[76] D.R. Senger, S.J. Galli, A.M. Dvorak, C.A. Perruzzi, V.S. Harvey and H.F.  Dvorak, Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science., 219 (1983) 983-985.
[77] J. Rhode, S. Fogoros, S. Zick, H. Wahl, K.A. Griffith, J. Huang,and J.R. Liu, Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement. Altern. Med., 7 (2007) 44.
[78] R. Hu, P. Zhou, Y.B. Peng, X. Xu, J. Ma, Q. Liu, L. Zhang, X.D. Wen, L.W. Qi, , N. Gao and P. Li, 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PloS one.,7 (2012) e39664.
[79] P. Karna, S. Chagani, S.R. Gundala, P.C. Rida, G. Asif, V. Sharma, M.V. Gupta and R.  Aneja, Benefits of whole ginger extract in prostate cancer. Br. J. Nutr., 107 (2012) 473-484.
[80] J. Citronberg, R. Bostick, T. Ahearn, D.K. Turgeon, M.T. Ruffin, Z. Djuric, A. Sen, D.E. Brenner and S.M.  Zick, Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: results from a pilot, randomized, and controlled trial. Cancer Prev. Res., 6 (2013) 271-281.
[81] S.M. Zick, D.K. Turgeon, J. Ren, M.T. Ruffin, B.D. Wright, A. Sen, Z. Djuric and D.E.  Brenner, Pilot clinical study of the effects of ginger root extract on eicosanoids in colonic mucosa of subjects at increased risk for colorectal cancer. Mol. Carcinog., 54 (2015) 908-915.
[82] J. Debbarma, P. Kishore, B.B. Nayak, N. Kannuchamy, V. Gudipati, Antibacterial activity of ginger, eucalyptus and sweet orange peel essential oils on fish‐borne bacteria. J. Food Process. Preserv., 37 (2013) 1022-1030.
[83] M. Park, J. Bae and D.S. Lee, Antibacterial activity of [10]‐gingerol and [12]‐gingerol isolated from ginger rhizome against periodontal bacteria. Phyther. Res., 22 (2008) 1446-1449,
[84] A. Barasch, M.M. Safford, I. Dapkute-Marcus and D.H. Fine, Efficacy of chlorhexidine gluconate rinse for treatment and prevention of oral candidiasis in HIV-infected children: a pilot study. Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology., 97 (2004) 204-207.
[85] E. Ernst and M.H.  Pittler, Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials. Br. J. Anaesth., 84 (2000) 367-371.
[86] A. Sebiomo, A.D. Awofodu, A.O. Awosanya, F.E. Awotona, and A.J.  Ajayi, Comparative studies of antibacterial effect of some antibiotics and ginger (Zingiber officinale) on two pathogenic bacteria. J. Microbiol. Antimicrob., 3 (2011) 18-22,
[87] S. Burt, Essential oils: their antibacterial properties and potential applications in foods—a review. Int. J. Food Microbiol., 94 (2004) 223-253.
[88] H. Chandarana, S. Baluja and S. CHANDA, Comparison of antibacterial activities of selected species of Zingiberaceae family and some synthetic compounds. Turk  J  Biol., 29 (2005) 83-97.
[89] N. Bezić, M. Skočibušić, V. Dunkić and A. Radonić, Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytother. Res., 17 (2003) 1037-1040.
[90] J.H. Lee, Y.G. Kim, P. Choi, J. Ham, J.G. Park and J.  Lee, Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front. Cell. Infect., 8 (2018) 299.
[91] R.G. Berger, Flavours and Fragrances, Springer Berlin Heidelberg, Berlin, Heidelberg. (2007).
Volume 4, Issue 2 - Serial Number 2
April 2021
Pages 120-129
  • Receive Date: 14 February 2021
  • Revise Date: 10 April 2021
  • Accept Date: 10 April 2021
  • First Publish Date: 10 April 2021