Pyrolysis of plastic wastes as a way of obtaining valuable chemical raw materials (n1)

Document Type : Review Article


Faculty of Chemical Engineering and Technology, Cracow University of Technology, Cracow, Poland


This article presents a mini-review of the literature on the laboratory scale pyrolysis of selected plastic waste. Among the various types of polymer materials polyolefins (PE and PP), as well as polystyrene (PS), polyoxymethylene (POM), and polyvinyl chloride (PVC), were selected. The paper highlights valuable compounds and chemical raw materials can be obtained by pyrolyzing the waste polymers.


Main Subjects

  • References

    • Plastic Europe. Plastics - the facts 2016 an analysis of European plastics production, demand and waste data. Brussels: Association of Plastic Manufacturers Brussels (2016).
    • Plastic Europe. Plastics - the facts 2019 an analysis of European plastics production, demand and waste data. Brussels: Association of Plastic Manufacturers Brussels (2019).
    • Production of plastics worldwide from 1950 to 2019. Available online in:
      (access: 04.02.2021).
    • Lynch, F. Kupper, J. Broerse, Toward a Socially Desirable EU Research and Innovation Agenda on Urban Waste: A Transnational EU Citizen Consultation. Sustainability, 10 (2018), 1641.
    • Wielgosiński, Termiczne przekształcanie odpadów komunalnych: wybrane zagadnienia, Nowa Energia, Racibórz (2016).
    • Waste statistic. Available online in: (access: 04.02.2020).
    • Directive of the European Parliament and of the Council, amending Directive 2008/98/EC on waste (2015).
    • Directive of the European Parliament and of the Council 2013/29/UE, on the harmonization of the laws of the Member States relating to the making available on the market of pyrotechnic articles (2013).
    • Canopoli, F. Coulon, S. Wagland, Degradation of excavated polyethylene and polypropylene waste from landfill, Science of The Total Environment, (698) 2020, 134125.
    • Santamaria, Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel, Fuel, (283) 2021, 118922.
    • Miandad M.A. Barakat Asad S. Aburiazaiza M. Rehan A.S. Nizami, Catalytic Pyrolysis of Plastic Waste: A Review, Process Safety and Environment Protection, (2016), 1-45.
    • D. A. Sharuddin, F. Abnisa, W. M. A. W. Daud, M. K.Aroua, A review on pyrolysis of plastic wastes, Energy Conversion and Management, (115) 2016, 308-326.
    • Majka, O. Bartyzel, K. N. Raftopoulos, J. Pagacz, A. Leszczynska, K. Pielichowski, Recycling of polypropylene/montmorillonite nanocomposites by pyrolysis, Journal of Analytical and Applied Pyrolysis, (119) 2016, 1-7.
    • Obeid, J. Zeaiter, A. H. Al-Muhtaseb, K. Bouhadir, Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and

    catalysts, Energy Conversion and Management, (85) 2014, 1–6.

    • Cheng, J. Gu, Y. Wang, J. Zhang, H. Yuan, Y. Chen, Polyethylene high-pressure pyrolysis: Better product distribution and process mechanism analysis, Chemical Engineering Journal, (385) 2019, 123866.
    • B. Park, Y. S. Jeong, J. S. Kim, Activator-assisted pyrolysis of polypropylene, Applied Energy, (253) 2019, 113558.
    • B. Park, Y. S. Jeong, J. S. Kim, Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene, Energy, (166) 2019, 343-351.
    • Kaminsky, I. Zorriqueta, Catalytical and thermal pyrolysis of polyolefins, Journal of Analytical and Applied Pyrolysis, (79) 2007, 368-374.
    • Colantonio, L. Cafiero, D. De Angelis, N. M. Ippolito, R. Tuffi, S. V. Ciprioti, Thermal and catalytic pyrolysis of a synthetic mixture representative of packaging plastics residue, Frontiers of Chemical Science and Engineering, (14) 2020, 288–303.
    • Butler, G. Devlin, K. McDonnell, Waste polyolefins to liquid fuels via pyrolysis: Review of commercial state-of-the-art and recent laboratory research, Waste and Biomass Valorization, (2) 2013, 227–255.
    • Elordi, M. Arabiourrutia, J. Bilbao, M. Olazar, Energetic Viability of a Polyolefin Pyrolysis Plant, Energy and Fuels, (32) 2018, 3751–3759.
    • M. Ali, S. A. Quershi, Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels, Fuel Processing Technology, (92) 2011, 1109–1120.
    • Ahmad, M. Ismail Khan, H. Khan, M. Ishaq, R. Tariq, K. Gul, Pyrolysis Study of Polypropylene and Polyethylene into Premium Oil Products International, Journal of Green Energy, (12) 2014, 663-671.
    • R. Ashcroft, Industrial Polymer Applications, Royal Society of Chemistry, London (2016).
    • B. Park, Y. S. Jeong, J. S. Kim, B. Guzelciftci, Two-stage pyrolysis of polystyrene: Pyrolysis oil as a source of fuels or benzene, toluene, ethylbenzene, and xylenes, Applied Energy, (259) 2020, 114240.
    • Prathiba, M. Shruthi, Lima Rose Miranda, Pyrolysis of polystyrene waste in the presence of activated carbon in conventional and microwave heating using modified thermocouple, Waste Management, (76) 2018, 528-536.
    • Razza, M. Zeesha, S. Qaisa, B. M. Muneer, Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene, Fuel, (257) 2019, 116119.
    • Ji, L. Chen, J. Que, L. Zheng, Z. Chen, Z. Wu, Effects of transition metal oxides on pyrolysis properties of PVC, Process Safety and Environmental Protection, (140) 2020, 211-220.


    • Torres, Y. Jiang, D. A. Sanchez-Monsalve, G. A. Leeke, Hydrochloric acid removal from the thermogravimetric pyrolysis of PVC, Journal of Analytical and Applied Pyrolysis, (149) 2020, 104831.
    • Gui, Y. Qiao, D. Wan, S. Liu, Z. Han, H. Yao, M. Xu, Nascent tar formation during polyvinylchloride (PVC) pyrolysis, Proceedings of the Combustion Institute, (34) 2013, 2321-2329.
    • Berkowicz, T. Majka, W. Żukowski, The pyrolysis and combustion of polyoxymethylene in a fluidised bed with the possibility of incorporating CO2, Energy Conversion and Management, (214) 2015, 112888.
    • Hasegawa, H. Takeshita, F. Yoshill, K. Makuuchi, Effect of combination of irradiation and zeolite on pyrolysis of polymer materials, International Atomic Energy Agency, (1998) 413-424.
    • Khani, S. Mohammadi, H. Rasulzade, Converting polymeric mixture waste of a car breaker company to hydrocarbon by designed high performance co-pyrolysis system, Chemical Review and Letters, (3) 2020, 180-183.
    • Żukowski, G. Berkowicz, The combustion of liquids and low-density solids in a cenospheric fluidised bed, Combustion and Flame, (206) 2019, 476-489.
    • Żukowski, G. Berkowicz, The combustion of polyolefins in inert and catalytic fluidised beds, Journal of Cleaner Production, (236) 2019, 117663.
    • Pichór, K. Mars, E. Godlewska, R. Mania, Właściwości mechaniczne mikrosfer glinikrzemianowych z warstwami emtalicznmi, Kompozyty, (10) 2010, 149-153.