A DFT studies on a potential anode compound for Li-ion batteries: Hexa-cata-hexabenzocoronene nanographen

Document Type : Research Article


1 Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Department of Chemistry, Payame Noor University, Tehran, Iran


In this work, the possible apply of a hexa-cata-hexabenzocoronene HCor as anode material was studied for Li-ion batteries (LIBs) using the B3LYP/6-31G* level. The planar structure of HCor is less stable (by about 0.243 hartree) in comparison with the twisted structure. The Li cation and neutral are suitably adsorbed high up the middle of a HCor hexagonal ring with the adsorption energy of -120.3 and -2.7 kcal/mol, respectively. The calculated specific storage capacity of HCor is 450.1 mAh/g and the great cell voltage is 2.63 V generated by the interaction between Li+ and HCor. The HCOR is considered an ideal candidate to be used as an anode material in LIBs because of high storage capacity and ion mobility.


[1] J.R. Dahn, T. Zheng, Y. Liu, J. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 270 (1995) 590.
[2] M.D. Johannes, K. Swider-Lyons, C.T. Love, Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials, Solid State Ionics, 286 (2016) 83-89.
[3] M. Armand, J.-M. Tarascon, Building better batteries, Nature, 451 (2008) 652-657.
[4] H. Kim, J.C. Kim, M. Bianchini, D.H. Seo, J. Rodriguez‐Garcia, G. Ceder, Recent progress and perspective in electrode materials for K‐ion batteries, Advanced Energy Materials, 8 (2018) 1702384.
[5] P.P. Prosini, C. Cento, M. Carewska, A. Masci, Electrochemical performance of Li-ion batteries assembled with water-processable electrodes, Solid State Ionics, 274 (2015) 34-39.
[6] Q. Deng, Y. Wang, Y. Zhao, J. Li, Disodium terephthalate/multiwall-carbon nanotube nanocomposite as advanced anode material for Li-ion batteries, Ionics, 23 (2017) 2613-2619.
[7] N.P. Shetti, S. Dias, K.R. Reddy, Nanostructured organic and inorganic materials for Li-ion batteries: A review, Materials Science in Semiconductor Processing, 104 (2019) 104684.
[8] T. Huang, B. Tian, J. Guo, H. Shu, Y. Wang, J. Dai, Semiconducting borophene as a promising anode material for Li-ion and Na-ion batteries, Materials Science in Semiconductor Processing, 89 (2019) 250-255.
[9] Levi, E.; Gofer, Y.; Aurbach, D. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chem. Mater. 2009, 22, 860–868.
[10] Barker, J.; Saidi, M. Y.; Swoyer, J. L. A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4F. Electrochem. Solid-State Lett. 2003, 6, A1–A4.
[11] D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries, ACS applied materials & interfaces, 6 (2014) 11173-11179.
[12] N. Singh, T.S. Arthur, C. Ling, M. Matsui, F. Mizuno, A high energy-density tin anode for rechargeable magnesium-ion batteries, Chemical communications, 49 (2013) 149-151.
[13] M.M. Huie, D.C. Bock, E.S. Takeuchi, A.C. Marschilok, K.J. Takeuchi, Cathode materials for magnesium and magnesium-ion based batteries, Coordination Chemistry Reviews, 287 (2015) 15-27.
[14] R.C. Massé, E. Uchaker, G. Cao, Beyond Li-ion: electrode materials for sodium-and magnesium-ion batteries, Science China Materials, 58 (2015) 715-766.
[15] J.O. Besenhard, M. Winter, Advances in battery technology: Rechargeable magnesium batteries and novel negative‐electrode materials for lithium ion batteries, ChemPhysChem, 3 (2002) 155-159.
[16] M.T. Baei, A.A. Peyghan, Z. Bagheri, A computational study of AlN nanotube as an oxygen detector, Chin. Chem. Lett., 23 (2012) 965–968.
[17] V. Nagarajan, R. Chandiramouli, Detection of trace level of hazardous phosgene gas on antimonene nanotube based on first-principles method, Journal of Molecular Graphics and Modelling, 88 (2019) 32-40.
[18] P.N. Samanta, K.K. Das, QM/MM study of the interaction between zigzag SnC nanotube and small toxic gas molecules, International Journal of Quantum Chemistry, 116 (2016) 411-420.
[19] O.V. Ogloblya, Y.I. Prylutskyy, Y.M. Strzhemechny, Peculiarities of conductance of carbon nanotube-based quantum dots, International Journal of Quantum Chemistry, 110 (2010) 195-201.
[20] Y.-X. Yu, Can all nitrogen-doped defects improve the performance of graphene anode materials for lithium-ionbatteries?, Physical Chemistry Chemical Physics, 15 (2013) 16819-16827.
[21] R.A. Jishi, C.T. White, J.W. Mintmire, Endohedral selenium chains in carbon, boron nitride, and BC2N nanotubes, International Journal of Quantum Chemistry, 80 (2000) 480-485.
[22] K. Adhikari, A.K. Ray, On the existence and stability of double-walled armchair silicon carbide nanotubes, Solid State Communications, 151 (2011) 430-435.
[23] A.A. Peyghan, J. Beheshtian, The influence of Stone-Wales defects in nanographene on the performance of Na-ion batteries, Journal of Molecular Graphics and Modelling, 98 (2020) 107578.
[24] A.A. Peyghan, H. Soleymanabadi, M. Moradi, Structural and electronic properties of pyrrolidine-functionalized [60]fullerenes, Journal of Physics and Chemistry of Solids, 74 (2013) 1594-1598.
[25] V.R. Cervellera, M. Albertí, F. Huarte-larrañaga, A molecular dynamics simulation of air adsorption in single-walled carbon nanotube bundles, International Journal of Quantum Chemistry, 108 (2008) 1714-1720.
[26] J. Beheshtian, M. Noei, H. Soleymanabadi, A.A. Peyghan, Ammonia monitoring by carbon nitride nanotubes: A density functional study, Thin Solid Films, 534 (2013) 650–654.
[27] B. Shang, Q. Peng, X. Jiao, G. Xi, X. Hu, TiNb2O7/carbon nanotube composites as long cycle life anode for sodium-ion batteries, Ionics, 25 (2019) 1679-1688.
[28] F. Akbari, M. Foroutan, The effect of two layers of graphene with a striped pattern on wettability parameters of the biodroplets, Adsorption, 26 (2020) 407-427.
[29] S. Aslam, R.U.R. Sagar, Y. Liu, T. Anwar, L. Zhang, M. Zhang, N. Mahmood, Y. Qiu, Graphene decorated polymeric flexible materials for lightweight high areal energy lithium-ion batteries, Applied Materials Today, 17 (2019) 123-129.
[30] Ş. Karaal, H. Köse, A.O. Aydin, H. Akbulut, The effect of LiBF4 concentration on the discharge and stability of LiMn2O4 half cell Li ion batteries, Materials Science in Semiconductor Processing, 38 (2015) 397-403.
[31] A.A. Peyghan, M. Noei, A Theoretical Study of Lithium-intercalated Pristine and Doped Carbon Nanocones, Journal of the Mexican Chemical Society, 58 (2014) 46-51.
[32] Z. Yang, Y. Huang, J. Hu, L. Xiong, H. Luo, Y. Wan, Nanocubic CoFe2O4/graphene composite for superior lithium-ion battery anodes, Synthetic Metals, 242 (2018) 92-98.
[33] S.W. Lee, N. Yabuuchi, B.M. Gallant, S. Chen, B.-S. Kim, P.T. Hammond, Y. Shao-Horn, High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotech. 5 (2010) 531-537.
[34] L. Yan, J. Yu, H. Luo, Ultrafine TiO2 nanoparticles on reduced graphene oxide as anode materials for lithium ion batteries, Applied Materials Today, 8 (2017) 31-34.
[35] A. Narita, X.-Y. Wang, X. Feng, K. Müllen, New advances in nanographene chemistry, Chemical Society Reviews, 44 (2015) 6616-6643.
[36] X. Wu, Z. Zhang, H. Soleymanabadi, Substituent effect on the cell voltage of nanographene based Li-ion batteries: A DFT study, Solid State Communications, 306 (2020) 113770.
[37] S. Kumar, S. Pola, C.-W. Huang, M.M. Islam, S. Venkateswarlu, Y.-T. Tao, Polysubstituted Hexa-cata-hexabenzocoronenes: Syntheses, Characterization, and Their Potential as Semiconducting Materials in Transistor
Applications, The Journal of Organic Chemistry, 84 (2019) 8562-8570.
[38] J.S. Wright, C. Rowley, L. Chepelev, A ‘universal’B3LYP-based method for gas-phase molecular properties: bond dissociation enthalpy, ionization potential, electron and proton affinity and gas-phase acidity, Molecular Physics, 103 (2005) 815-823.
[39] H. Kruse, L. Goerigk, S. Grimme, Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem, The Journal of organic chemistry, 77 (2012) 10824-10834.
[40] C. Peng, H. Bernhard Schlegel, Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States, Israel Journal of Chemistry, 33 (1993) 449-454.
[41] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chaem., 14 (1993) 1347-1363.
[42] N. O’Boyle, A. Tenderholt, K. Langner, cclib: A library for package-independent computational chemistry algorithms, J. Comput. Chem. 29 (2008) 839-845
[43] G.H. Vineyard, Frequency factors and isotope effects in solid state rate processes, Journal of Physics and Chemistry of Solids, 3 (1957) 121-127.
[44] E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, A comparative computational study on the BN ring doped nanographenes, Applied Surface Science, 396 (2017) 740-745.
[45] P.A. Denis, F. Iribarne, Theoretical investigation on the interaction between beryllium, magnesium and calcium with benzene, coronene, cirumcoronene and graphene, Chemical Physics, 430 (2014) 1-6.
[46] S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, High capacity positive electrodes for secondary Mg-ion batteries, Electrochimica Acta, 82 (2012) 243-249.
[47] Y. Shao, M. Gu, X. Li, Z. Nie, P. Zuo, G. Li, T. Liu, J. Xiao, Y. Cheng, C. Wang, J.-G. Zhang, J. Liu, Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries, Nano Letters, 14 (2014) 255-260.
[48] X.-J. Ye, G.-L. Zhu, J. Liu, C.-S. Liu, X.-H. Yan, Monolayer, Bilayer, and Heterostructure Arsenene as Potential Anode Materials for Magnesium-Ion Batteries: A First-Principles Study, The Journal of Physical Chemistry C, 123 (2019) 15777-15786.
[49] J. Zhang, G. Liu, H. Hu, L. Wu, Q. Wang, X. Xin, S. Li, P. Lu, Graphene-like carbon-nitrogen materials as anode materials for Li-ion and mg-ion batteries, Applied Surface Science, 487 (2019) 1026-1032.
[50] N. Wu, Y.-C. Lyu, R.-J. Xiao, X. Yu, Y.-X. Yin, X.-Q. Yang, H. Li, L. Gu, Y.-G. Guo, A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries, NPG Asia Materials, 6 (2014) e120-e120. [51] Y.S. Meng, M.E. Arroyo-de Dompablo, First principles computational materials design for energy storage materials in lithium ion batteries, Energy & Environmental Science, 2 (2009) 589-609