Anions Bioremediation Potential of Immobilized Bacteria in Tannery Industrial Effluents from Kano State, Nigeria

Document Type : Research Article

Authors

1 Department of pure and applied chemistry, faculty of science, University of maiduguri

2 Department of Pure and Applied Chemistry, Faculty of Science, University of Maiduguri, Borno State, Nigeria

3 Department of Microbiology, Faculty of Science, University of Maiduguri, Borno State, Nigeria

4 Department of Chemical Engineering, Faculty of Engineering, University of Maiduguri, Borno State, Nigeria

Abstract

The present study aims to assess the potentials of immobilized bacteria in the remediation of anions within the effluents by determining the levels of the anions before and after the remediation. Industrial Effluents Samples from Gashash Tanneries (TAN1), Larabee Tannery Industry (TAN2) and Z Tannery Industries (TAN3) in Kano State, Nigeria were collected monthly for six months (August 2017 to January 2018). Bacteria were isolated from the effluents and immobilized on agar-agar. The effluent samples were analyzed for the anions before and after the treatment using DR/2010 HACH portable data logging spectrophotometer. Different masses (5 g, 10 g, 15 g, 20 g, and 25 g) of the bacteria were used in the treatment of 250 ml of the effluents for ten days in a shaker incubator (Gallenkamp-OC-4364-L) at the temperature 30 °C and speed of 60 rpm. Pre-treatment analysis of the effluents for nitrate (NO-3), Sulphate (SO2-4), Phosphate (PO3-4) and Chloride (Cl-) give the following results; NO-3 ranged (25.35±17.16-28.12±10.72 mg/l); SO2-4 (67.00±5.93-114.83±53.20 mg/l); PO3-4 (26.16±22.93-34.17±16.73 mg/l) and Cl- (22.57±9.64-26.00a±4.86 mg/l). No statistical difference (p ≤ 0.05) was observed for all the anions among the different industries. The bacterial isolates were identified as Neisseria spp, Bacillus cereus, and Staphylococcus aureus, in TAN1, TAN2, and TAN3, respectively. After treatment of the effluents with the different masses of the isolated bacteria, the mean level of NO-3 were found to range as (6.17±6.67-20.78±7.76); SO2-4 (25.73±17.84-46.00±46.81); PO3-4 (11.45±12.02-28.19±9.09) and Cl-(0.38±1.83-15.36±13.58). The results of Post-treatment analysis showed that there is an overall decrease in the levels of the anions determined when compared with that of the pre-treatment. The overall percentage reduction of the immobilized bacteria in the treatment of the respective effluents was in the order TAN3 (57%)>TAN1 (49%)>TAN2 (47%). Therefore, the immobilized bacteria are having higher potentials for the treatment of the anions in the effluents.

Keywords


[1]    H. Dargo and A. Adhena, Tannery wastewater treatment: a Review, Int. J. Emerg. Trend. Sci. Technol., 1 (2014) 1488-1494.
[2]    M. Bosnic, J. Buljan and R. P. Daniels, Regional program pollution control in the tanning industry US." RAS/ 120 (2000) 1-14.
[3]    L. J. Fu, E. S. Robert and G. S. Ralph, Assessing acute toxicities of pre‐and post‐treatment industrial  wastewaters with Hydra attenuata: A comparative study of  acute toxicity with the fathead minnow, Pimephales promelas, Environ. Toxicolo. Chem. Int. J., 13 (1994) 563-569.
[4]    J. Buljan and I. Kral, Introduction to treatment of tannery effluents. United Nations Industrial Development Organization (Unido) Vienna.(2011)
[5]    I. I. Omoleke, Management of environmental pollution in Ibadan, an African city: the challenges of health hazard facing government and the people, J. Human. Ecol., 15 (2004) 265-275.
[6]    N. Singh, B. K. Sharma and P. C. Bohra, Impact of industrial effluent of arid soils by using satellite imageries, J.  Indian. Soc. Remote. Sens., 28 (2000) 79.
[7]    World Bank, Nigeria's strategic options for redressing industrial pollution. World Bank, industry and energy division. 1st edition, West Central Africa Department; Annexes (1995) 60-62.
[8]    L. A. H. M., Verheijen, D. Wiersema, L. W.  Hulshoff Pol, and J. De Wit, Management of wastes from animal product processing. Livestock and environment, Finding a balance, International Agriculture Center, Wageningen, The Netherlands (1996).
[9]    V. E. Emongor and G. M. Ramolemana, Treated sewage effluent (water) potential to be used for horticultural production in Botswana, Phys. Chem. Earth., 29 (2004) 1101-1108.
[10]  P. M. Nyenje, J. W. Foppen, S. Uhlenbrook, R. Kulabako, And A. Muwanga, Eutrophication and nutrient release in urban  areas of sub-Saharan Africa—a review, Sci. total.  Environ., 3 (2010) 447-455.
[11]  H. Wu, Z. Jian, L. Peizhi, Z. Jinyong, X. Huijun  and Z. Bo, Nutrient removal in constructed microcosm wetlands For treating polluted river water in  northern China, Ecol. Eng., 37 (2011) 560-568.
[12]  X. Dong and B. R.  Gudigopuram, Ammonia-oxidizing bacterial community and nitrification rates in constructed wetlands treating swine wastewater, Ecol. Eng., 40 (2012) 189-197.
[13]  P. Rolf, Reações de química na análise de água, (2009) 1-334.
[14]  E. El-Bestawy, Biological treatment of leather-tanning industrial wastewater using free living bacteria. (2013).
[15]  M. Eddy, Wastewater Engineering, McGraw Hill Publications. 2. Third Edition, Tata McGraw-Hill Publishing Company Limited, New Delhi, (2003) 16.
[16]  C. M. Noorjahan, Physicochemical characteristics, identification of bacteria and biodegradation of industrial effluent, J. Bioremed. Biodegrad., 5 (2014) 1000219.
[17]  R. Sen, and S. Chakrabarti, Biotechnology–applications to environmental remediation in resource exploitation, Current. Sci., 22 (2009) 768-775.
[18]  E. J. Bouwer, and J. B. Z. Alexander, Bioremediation of organic compounds—putting microbial metabolism to work, Trend. Biotechnol., 11 (1993) 360-367.
[19]  R.S. Vannela and S.K. Verma, Bioaccumulation and biosorption of heavy metals by Spirulina platensis, Int J. Biodet. Biodegrad, 53 (2007) 285–29
[20]  T. Jin, K. Il-Gi, K. Won-Sik, S. Suk-Chul, K. Byung-Dong and R. Seong-Lyul , Expression of chromium (VI) reductase gene of heavy metal reducing bacteria in tobacco plants, J. Plant Biotechnol, 3 (2001) 13- 17.
[21]  A. O. Olufunmi, Optimization and Characterization of Indigenous Microorganisms Isolated from Tannery Effluents in Nigeria. Int. Res. J. Environ. Sci., 2 (2013) 14-21.
[22]  A. Baba, S.T. Garba and H. S. Bello, Bioremediation Potential of Immobilized Corynebacterium kutsceri in the Treatment of Tannery Industrial Effluent from Challawa Industrial Estate, Kano State, Nigeria, J. Turk. Chem. Soc. A. Chem., 7 (2020) 335-350.
[23]  S. Dan'Azumi and M. H. Bichi, industrial pollution and heavy metals profile of challawa river in kano, nigeria, J. Appl. Sci. Environ. Sanit., 5 (2010) 123-134.
[24]  DWAF: Analytical Methods Manual, TR 151, Department of Water Affairs and Forestry, Pretoria, (1992)
[25]  APHA, Standard methods for Examination of Will bete and Will betewater, 15th edition. Brydpass Springfield Will behington DC, (1989) 164-176
[26]  A. T. Ajao, G. B. Adebayo and S. E. Yakubu, Bioremediation of textile industrial effluent using mixed culture of Pseudomonas aeruginosa and Bacillus subtilis immobilized on agar-agar in a bioreactor, J. Microbiol. Biotech. Res., 1 (2011) 50-56.
[27]  P. Ellaiah, K. Adinarayana and B. Jyothi, Pharm. Sci. Technol., (2005) 391-397.
[28]  R. Margesin, and F. Schinner, Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area." Appl. Environ. Microbial., 67 (2001) 3127-3133.
[29]  S. S. D. Mohammed, A. A. Orukotan, and H. Abdullahi, Physicochemical and Bacteriological Assessment of Tannery Effluent from Samaru-Zaria, Kaduna State, Nigeria, J. Appl. Sci. Environ. Manage., 21 (2017) 734-740.
[30]  J.C. Akan, E. A. Moses, V. O. Ogugbuaja, and J. Abah, Assessment of tannery industrial effluents from Kano metropolis, Kano State, Nigeria, J. Appl. Sci., 7 (2007) 2788-2793.
[31]  B. I. Islam, A. E. Musa, E. H. Ibrahim, Salma A. A. Sharafa and M. E. Babiker, Evaluation and characterization of tannery wastewater, J. Forest. Prod. Ind., 3 (2014) 141-150.
[32]  World Health Organization, Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide. World Health Organization, 2006.
[33]  NESREA National Environmental Standards for Effluent Limitations and Regulation. (2009) 1233-1236
[34]  A. A. Jimoh, G.B. Adebayo, D. Baba, and A. Baba, Bioremediation Process of Effluent from Detergent and Food Industries in Jos, Nigeria: Kinetics and Thermodynamics, Int. J. Eng. Sci. Invent., 7(2018) 62-73.
[35]  C. Sreemoyee, and P. Pugaht, Assessment of physico-chemical parameters of dairy waste water and isolation and characterization of bacterial strains in terms of cod reduction, Int. J. Sci., 2 (2013) 395-400.
[36]  K. Mythili, and B. Karthikeyan, Bioremediation of Cr (VI) from tannery effluent using Bacillus spp and Staphylococcus spp., Int. Multidiscipl. Res. J., 1(2011) 120-124.
[37]   M. M. Uma, S. Aruna, M. Gomathi and A. H. Abdul Jaffar, Bioremediation by Free and Immobilized Bacteria Isolated from Tannery Effluent. International Journal of Research in Applied, Natural and Social Sciences, 5 (2017) 75-90.
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[38]  L. Gianfreda and A. R. Maria, Potential of extra cellular enzymes in remediation of polluted soils: a review." Enzyme and microbial technology, 35 (2004) 339-354.
[39]  J.V.S. Ramesh and S. P. Singh, Yearly variation in certain physicochemical parameters of pond at eastern Doon Valley, Uttar Pradesh J. Zoo, 12 (1993) 75-77.
[40]  S. Sultan and H. Shahida, Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresource. Technol., 98 (2007) 340-344.
[41]  T. Godfrey and R. Jon, Industrial enzymology: the application of enzymes in industry, (1982).
[42]  A. J. Russell, A. B. Jason, F. D. Géraldine and R. K. Richard, Biomaterials for mediation of chemical and biological warfare agents. Ann. Rev. Biomed. Eng., 5 (2003) 1-27.
[43]  A. Kandelbauer, M. Oliver , W.K. Rudolf,  E. Angelika her and M. G. Georg, Study of dye decolorization in an immobilized laccase enzyme‐reactor  using online spectroscopy, Biotechnol. Bioeng., 87 (2004) 552-563.
[44]  H. I. S. A. O. Ohtake, Bacterial reduction of toxic Chromate, Biol. Degrad. Bioremed. Toxic. Chem., (1994) 403-415.
[45]  K. Chen, Y. W. Jane, L. Dar-Jen and J. H. Sz-Chwun, Decolorization of the textile dyes by newly isolated  bacterial strains, J. Biotechnol., 101, 1 (2003) 57-68.
[46]  F. Wang, Y. Jun, S. Yang, C. Huilun, R. Mohammad, C. Ke, Q. Yiguang, Z. Gyula and B. Emilia, Short-time effect of heavy metals upon microbial community activity, J. Hazard. Mater., 173 (2010) 510-516.