A Short Chronological Review on the Syntheses of Amine-Boranes

Document Type : Review Article

Author

Chemistry, Purdue University, West Lafayette, USA

Abstract

Since their discovery by Burg and Schlesinger in 1937, amine-boranes have enjoyed a rich preparative history and have experienced reinvigorated interest as valuable compounds. These borane complexes have been implemented in a variety of applications, spanning from reagents in organic syntheses to hydrogen storage materials. The importance of amine-boranes derives especially from their reductive abilities. Given the utility of amine-boranes and their current resurgence, a mini review on their general properties and notable preparations is both timely and potentially of interest to organic and materials chemists alike.

Keywords


[1] Burnham, B.S., Amine-Boranes, in Encyclopedia of Metalloproteins, R.H. Kretsinger, V.N. Uversky, and E.A. Permyakov, Editors. 2013, Springer New York: New York, NY. pp. 58-62.
[2] A. Staubitz, A. P. M. Robertson, M. E. Sloan, and I. Manners, Amine− and Phosphine−Borane Adducts: New Interest in Old Molecules. Chem. Rev., 110 (2010) 4023-4078.
[3] A. B. Burg, H. I. Schlesinger, Hydrides of Boron. VII. Evidence of the Transitory Existence of Borine (BH3): Borine Carbonyl and Borine Trimethylammine. J. Am. Chem. Soc., 59 (1937) 780-787.
[4] M. Couturier, B. M. Andresen, J. L. Tucker, P. Dubé, S. J. Brenek, J. T. Negri, The use of borane–amine adducts as versatile palladium-catalyzed hydrogen-transfer reagents in methanol. Tetrahedron. Lett., 42 (2001) 2763-2766.
[5] (a) A. E. Carre-Burritt, B. L. Davis, B. D. Rekken, N. Mack, T. A. Semelsberger, Enabling ammonia-borane: co-oligomerizaiton of ammonia-borane and amine-boranes yield liquid products. Energ. Environ. Sci., 7 (2014) 1653-1656.
(b) B. L. Dietrich, K. I. Goldberg, D. M. Heinekey, T. Autrey, J. C. Linehan, Iridium-Catalyzed Dehydrogenation of Substituted Amine Boranes: Kinetics, Thermodynamics, and Implications for Hydrogen Storage. Inorg. Chem., 47 (2008) 8583-8585.
[6] (a) S. B. Bruce, Synthesis and pharmacological activities of amine-boranes. Curr. Med. Chem., 12 (2005) 1995-2010.
(b) I. H. Hall, C. J. Gilbert, A. T. McPhail, K. W. Morse, K. Hassett, B. F. Spielvogel, Antineoplastic activity of a series of boron analogues of α‐amino acids. J. Pharm. Sci., 74 (1985) 755-758.
(c) A. Sood, C. K. Sood, B. F. Spielvogel, I. H. Hall, O. T. Wong, Synthesis, cytotoxicity, hypolipidemic and anti‐inflammatory activities of amine—boranes and esters of boron analogues of choline and thiocholine. J. Pharm. Sci., 81 (1992) 458-462.
[7] R. O. Hutchins, K. Learn, B. Nazer, D. Pytlewski, A. Pelter, Amine boranes as selective reducing and hydroborating agents. A review. Org. Prep. Proced. Int., 16 (1984) 335-372.
[8] (a) M. A. Gamal-Eldin, D. H. Macartney, Host-Guest Complexations of Amine Boranes and Isoelectronic/Isostructural Quaternary Alkylammonium Cations by Cucurbit[7]uril in Aqueous Solution. Heteroat. Chem., 2019 (2019) 8124696.
[9] A. S. Kulkarni, P. V. Ramachandran, Water‐Promoted, Open‐Flask Synthesis of Amine‐Boranes: 2‐Methylpyridine‐Borane (2‐Picoline‐Borane). Org. Synth., 94 (2017) 332-345.
[10] (a) G. Alcaraz, S. Sabo‐Etienne, Coordination and dehydrogenation of amine–boranes at metal centers. Angew. Chem. Int. Ed., 49 (2010) 7170-7179.
(b) S. Babu Kalidindi, U. Sanyal, B. R. Jagirdar, Chem. Sus. Chem., 4 (2011) 317-324.
(c) J. M. Brunel, B. Faure, M. Maffei, Phosphane–boranes: Synthesis, characterization and synthetic applications. Coord. Chem. Rev., 187-180 (1998) 665-698.
[11] A. S. Kulkarni, Amine-Boranes: Novel Syntheses and Application as Green Hypergolic Propellants (Doctoral Dissertation, Purdue University, West Lafayette, USA (2017). Retrieved from https://docs.lib.purdue.edu/dissertations/AAI10281230/.
[12] (a) H. C. Brown, B. Singaram, Molecular addition compounds. 7. Synthesis of addition compounds of boron trifluoride, borane, and alane with N,N,N'N'-tetramethylethylenediamine and triethylenediamine by precipitation from ether solvents. Inorg. Chem., 19 (1980) 455-457.
(b) A. R. Gatti, T. Wartik, Preparation and properties of the mono-and bisborane adducts of N, N'-dimethylpiperazine and triethylenediamine. Inorg. Chem., 5 (1966) 2075-2076.
[13] L. Zhang, S. Li, Y. Tan, Z. Tang, Z. Guo, X. Yu, Synthesis and hydrogen release properties of alkyl-substituted amine-boranes. J. Mater. Chem. A, 2 (2014) 10682-10687.
[14] Y. Nakayama, H. Nakajima, U.S. Patent No. 10,407,448. Washington, DC: U.S. Patent and Trademark Office (2019).
[15] (a) H. Helten, A. Robertson, A. Staubitz, J. R. Vance, M. F. Haddow, I. Manners, Ambient Temperature Dehydrocoupling of Aromatic Amine-Boranes. Chem. Eur. J., 18 (2012) 4665-4680.
(b) C. A. Jaska, K. Temple, A. J. Lough, I. Manners, Transition metal-catalyzed formation of boron− nitrogen bonds: catalytic dehydrocoupling of amine-borane adducts to form aminoboranes and borazines. J. Am. Chem. Soc., 125 (2003) 9424-9434.
[16] H. Flores-Segura, L. A. Torres, Enthalpies of formation of primary, secondary, and tertiary amineborane adducts in tetrahydrofuran solution. Struct. Chem., 8 (1997) 227-232.
[17] H. W. Roesky, D. A. Atwood, Group 13 Chemistry I: Fundamental New Developments. 2002, Springer: New York.
[18] N. Zheng, J. Fan, G. D. Stucky, One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc., 128 (2006) 6550-6551.
[19] H. C. Kelly, M. B. Giusto, F. R. Marchelli, Amineborane reductions in aqueous acid media. J. Am. Chem. Soc., 86 (1964) 3882-3884.
[20] W. M. Jones, Amine Borane Reductions. The Stereochemistry of the Reduction of 4-t-Butylcyclohexanone with Trimethylamine Borane in the Presence and Absence of Boron Fluoride. J. Am. Chem. Soc., 82 (1960) 2528-2532.
[21] (a) H. C. Brown, B. C. S. Rao, A New Powerful Reducing Agent—Sodium Borohydride in the Presence of Aluminum Chloride and Other Polyvalent Metal Halides1,2. J. Am. Chem. Soc., 78 (1956) 2582-2588.
(b) W. Büchner, H. Niederprüm, Sodium Borohydride And Amine-Boranes, Commercially Important Reducing Agents, In Boron Chemistry–3, H. Nöth, Editor. 1977, Pergamon. pp. 733-743.
(c) Z. M. Heiden, A. P. Lathem, Establishing the hydride donor abilities of main group hydrides. Organometallics, 34 (2015) 1818-1827.
[22] Todd, D., J. Chem. Educ., 1979, 56(8): 540.
[23] Wietelmann, U., Felderhoff, M., and Rittmeyer, P., Hydrides, in Ullmann's Encyclopedia of Industrial Chemistry. 2016, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany. pp. 1-39.
[24] A. E. Finholt, A. C. Bond, H. I. Schlesinger, Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry. J. Am. Chem. Soc., 69 (1947) 1199-1203.
[25] H. I. Schlesinger, H. C. Brown, Metallo borohydrides. III. Lithium borohydride. J. Am. Chem. Soc., 62 (1940) 3429-3435.
[26] H. C. Brown, S. Krishnamurthy, Lithium triethylborohydride. Exceptionally powerful nucleophile in displacement reactions with organic halides. J. Am. Chem. Soc., 95 (1973) 1669-1671.
[27] C. F. Lane, Sodium cyanoborohydride—a highly selective reducing agent for organic functional groups. Synthesis, 3 (1975) 135-146.
[28] G. B. Fisher, J. C. Fuller, J. Harrison, S. G. Alvarez, E. R. Burkhardt, C. T. Goralski, B. Singaram, Aminoborohydrides. 4. The Synthesis and Characterization of Lithium Aminoborohydrides: A New Class of Powerful, Selective, Air-Stable Reducing Agents. J. Org. Chem., 59 (1994) 6378-6385.
[29] T. L. Ho, M. Fieser, L. F. Fieser, R. Danheiser, W. Roush, J. Smith, Diisobutylaluminum Hydride, (DIBAL-H), in Fieser and Fieser's Reagents for Organic Synthesis, L.F. Fieser, M. Fieser, and T.-L. Ho, Editors. (2013) 253-253.
[30] M. Gugelchuk, L. F. Silva III, R. S. Vasconcelos, S. A. P. Quintiliano, Sodium Bis(2-methoxyethoxy)aluminum Hydride, in Encyclopedia of Reagents for Organic Synthesis (2007).
[31] J. L. Fry, J. R. Rahaim, R. E. Maleczka, Triethylsilane, in Encyclopedia of Reagents for Organic Synthesis (2007).
[32] (a) H. C. Brown, S. Krishnamurthy, Forty years of hydride
reductions. Tetrahedron, 35 (1979) 567-607.
(b) H. C. Brown, P. V. Ramachandran, Sixty Years of Hydride Reductions, in Reductions in Organic Synthesis. American Chemical Society. (1996) 1-30.
[33] (a) W. J. Atkins, E. R. Burkhardt, K. Matos, Safe handling of boranes at scale. Org. Process Res. Dev., 10 (2006) 1292-1295.
(b) Lane, C.F. Ammonia-Borane and Related N-B-H Compounds and Materials: Safety Aspects, Properties and Applications, DOE Chemical Hydrogen Storage Center of Excellence: Northern Arizona University. (2006) 1-33.
[34] (a) M. B. Eleveld, H. Hogeveen, Enantioselective reduction of acetophenone by borane. chiral amine complexes. Tetrahedron. Lett., 27 (1986) 635-638.
(b) J. B. Le Toumelin, M. Baboulène, Chiral intramolecular amine-borane complexes as reducing agents for prochiral ketones. Tetrahedron: Asymmetry, 8 (1997) 1259-1265.
[35] (a) M. Periasamy, J. V. B. Kanth, C. K. Reddy, New routes for the synthesis of organometallic reagents. J. Chem. Soc., Perkin Trans. 1 (1995) 427-430.
(b) T. Yamashita, H. Mitsui, H. Watanabe, N. Nakamura, Preparations and asymmetric, reducing abilities of chiral polymeric amine‐boranes. Die Makromolekulare Chemie, 181 (1980) 2563-2569.
[36] A. Hirao, S. Itsuno, S. Nakahama, N. Yamazaki, Asymmetric reduction of aromatic ketones with chiral alkoxy-amineborane complexes. J. Chem. Soc., Chem. Commun., 7 (1981) 315-317.
[37] (a) E. J. Corey, R. K. Bakshi, S. Shibata, Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J. Am. Chem. Soc., 109 (1987) 5551-5553.
(b) E. J. Corey, R. K. Bakshi, S. Shibata, C. P. Chen, V. K. Singh, A stable and easily prepared catalyst for the enantioselective reduction of ketones. Applications to multistep syntheses. J. Am. Chem. Soc., 109 (1987) 7925-7926.
[38] M. G. Hu, J. M. Van Paasschen, R. A. Geanangel, New synthetic approaches to ammonia-borane and its deuterated derivatives. J. Inorg. Nucl. Chem., 39 (1977) 2147-2150.
[39] H. C. Brown, U.S. Patent No. 2,860,167. Washington, DC: U.S. Patent and Trademark Office (1958).
[40] H. C. Brown, H. I. Schlesinger, S. Z. Cardon, Studies in stereochemistry. I. Steric strains as a factor in the relative stability of some coördination compounds of boron. J. Am. Chem. Soc., 64 (1942) 325-329.
[41] R. Baldwin, R. Washburn, Borane Exchange Reactions. J. Org. Chem., 26 (1961) 3549-3550.
[42] (a) S. G. Shore, X. Chen, U.S. Patent No. 8,637,703 B2. Washington, DC: U.S. Patent and Trademark Office (2014).
(b) P. V. Ramachandran, A. S. Kulkarni, Nucleophilic displacement of ammonia from ammonia borane for the preparation of alkylamine-, pyridine-and phosphine-boranes. RSC Adv., 4 (2014) 26207-26210.
[43] G. W. Schaeffer, E. R. Anderson, The Preparation of Trimethylamine-borine, N-Trimethylborazole and N-Dimethylaminoborine. J. Am. Chem. Soc., 71 (1949) 2143-2145.
[44] M. D. Banus, T. R. P. Gibb, U.S. Patent No. 2,678,949. Washington, DC: U.S. Patent and Trademark Office (1954).
[45] A. V. Safronov, S. S. Jalisatgi, M. F. Hawthorne, U.S. Patent No. 10,179,795 B2. Washington, DC: U.S. Patent and Trademark Office (2019).
[46] (a) W. H. Schecter, U.S. Patent No. 3,033,766. Washington,
DC: U.S. Patent and Trademark Office (1962).
(b) W. H. Schecter, R. M. Adams, G. F. Huff, U.S. Patent No. 2,938,923. Washington, DC: U.S. Patent and Trademark Office (1960).
[47] M. D. Taylor, L. R. Grant, C. A. Sands, A convenient preparation of pyridine-borane. J. Am. Chem. Soc., 77 (1955) 1506-1507.
[48] H. I. Schlesinger, H. C. Brown, A. E. Finholt, The Preparation of Sodium Borohydride by the High Temperature Reaction of Sodium Hydride with Borate Esters1. J. Am. Chem. Soc., 75 (1953) 205-209.
[49] (a) H. C. Brown, Magnesium amide bases and amido-Grignards. 1. Ortho magnesiation. J. Organomet. Chem., 100 (1975) 3-15.
(b) H. C. Brown, From little acorns to tall oaks-from boranes through organoboranes. Science, 210 (1980) 485-492.
[50] (a) Japanese Patent Laid-open Publication No. 56(1981)-158792. Tokyo, Japan: Japan Patent Office.
(b) Japanese Patent Laid-open Publication No. 10(1998)-109991. Tokyo, Japan: Japan Patent Office.
(c) A. R. Cartolano, S. V. Ivanov, C. I. Teich, J. H. Yamamoto, U.S. Patent No. 8,039,666 B2. Washington, DC: U.S. Patent and Trademark Office (2011).
[51] R. Köster, Some aspects of the surface chemistry of carbon blacks and other carbons. Angew. Chem., 69 (1957) 94-97.
[52] H. Jenkner, U.S. Patent No. 3,051,754. Washington, DC: U.S. Patent and Trademark Office (1962).
[53] (a) S. V. Ivanov, B. Casas, U.S. Patent No. 7,718,154 B2. Washington, DC: U.S. Patent and Trademark Office (2010).
(b) H. Jenkner, U.S. Patent No. 3,103,416. Washington, DC: U.S. Patent and Trademark Office (1963).
[54] R. W. Bragdon, U.S. Patent No. 2,927,133. Washington, DC: U.S. Patent and Trademark Office (1960).
[55] (a) Farbenfabriken-Bayer-Aktiengesellschaft, British Patent No. 822,229. London: The Patent Office (1959).
(b) A. A. Hinckley, U.S. Patent No. 3,127,448. Washington, DC: U.S. Patent and Trademark Office (1964).
[56] H. Haberland, R. Stroh, U.S. Patent No. 3,013,016. Washington, DC: U.S. Patent and Trademark Office (1961).
[57] (a) J. A. Marsella, U.S. Statutory Invention Reg. Number H919. Washington, DC: U.S. Patent and Trademark Office (1991).
(b) J. M. Sullivan, U.S. Patent No. 5,516,909. Washington, DC: U.S. Patent and Trademark Office (1996).
(c) J. M. Sullivan, U.S. Patent No. Re. 36,115. Washington, DC: U.S. Patent and Trademark Office (1999).
[58] K. Lang, F. Schubert, U.S. Patent No. 3,037,985. Washington, DC: U.S. Patent and Trademark Office (1962).
[59] J. A. Snover, U.S. Patent No. 3,317,525. Washington, DC: U.S. Patent and Trademark Office (1967).
[60] (a) E. C. Ashby, U.S. Patent No. 3,257,455. Washington, DC: U.S. Patent and Trademark Office (1966).
(b) E. C. Ashby, U.S. Patent No. 3,153,671. Washington, DC: U.S. Patent and Trademark Office (1964).
[61] H. C. Kelly, J. O. Edwards, Ethane 1, 2-Diamineborane. J. Am. Chem. Soc., 82 (1960) 4842-4846.
[62] Archive, A.C.S.-M.o.t.W. Tetrahydrofuran. 2015 [cited 2020 06-Apr]; Available from: https://www.acs.org/content/acs/en/molecule-of-the-week/archive/t/tetrahydrofuran.html.
[63] M. D. Marshall, U.S. Patent No. 3,192,217. Washington, DC: U.S. Patent and Trademark Office (1965).
[64] E. C. Ashby, W. E. Foster, A new and Convenient Route to the Amine-Boranes. J. Am. Chem. Soc., 84 (1962) 3407-3408.
[65] S. Matsumura, N. Tokura, Preparation of triethylamine-borane or pyridine-borane in liquid sulfur dioxide and reduction of aralkyl halides with base-borane complex in liquid sulfur dioxide or in nitromethane. Tetrahedron Lett., 9 (1968) 4703-4705.
[66] K. C. Nainan, G. E. Ryschkewitsch, New synthesis of amine-and phosphine-boranes. Inorg. Chem., 8 (1969) 2671-2674.
[67] A. R. Burke, W. V. Hough, U.S. Patent No. 4,080,381. Washington, DC: U.S. Patent and Trademark Office (1978).
[68] [68] J. Plesek, B. Stibr, E. Drdakova, T. Jelinek, Czech Patent 242,064. Prague, Czech Republic: Industrial Property Office (1986).
[69] A. J. Arduengo, U.S. Patent No. 5,144,032. Washington DC: U.S. Patent and Trademark Office (1992).
[70] F. Cao, Z. Y. Fang, F. Chen, Q. Shen, S. Q. Wang, B. Li, Low Cost Chemical Synthesis of Ammonia Borane Complex for Hydrogen Storage. Key Eng. Mater., 519 (2012) 92-95.
[71] V. Kampel, A. Warshawsky, Organotin compounds and their therapeutic potential: a report from the Organometallic Chemistry Department of the Free University of Brussels. J. Organomet. Chem., 469 (1994) 15-17.
[72] C. J. Collins, M. Lanz, C. T. Goralski, B.. Singaram, Aminoborohydrides. 10. The Synthesis of Tertiary Amine−Boranes from Various Benzyl Halides and Lithium N,N-Dialkylaminoborohydrides. J. Org. Chem., 64 (1999) 2574-2576.
[73] P. V. Ramachandran, P. D. Gagare, Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg. Chem., 2007, 46(19): 7810-7817.
[74] P. V. Ramachandran, H. Mistry, A. S. Kulkarni, P. D. Gagare, Ammonia-mediated, large-scale synthesis of ammonia borane. Dalton Trans., 2014, 43(44): 16580-16583.
[75] P. V. Ramachandran, A. S. Kulkarni, The role of ammonia in promoting ammonia borane synthesis. Dalton Trans., 45 (2016) 16433-16440.
[76] . V. Ramachandran, A. S. Kulkarni, Y. Zhao, J. G. Mei, Amine–boranes bearing borane-incompatible functionalities: application to selective amine protection and surface functionalization. Chem. Commun., 52 (2016) 11885-11888.
[77] P. V. Ramachandran, B. C. Raju, P. D. Gagare, One-Pot Synthesis of Ammonia–Borane and Trialkylamine–Boranes from Trimethyl Borate. Org. Lett., 2012, 14(24): 6119-6121.
[78] P. V. Ramachandran, A. S. Kulkarni, Open-Flask Synthesis of Amine–Boranes via Tandem Amine–Ammonium Salt Equilibration–Metathesis. Inorg. Chem., 54 (2015) 5618-5620.