Transition Metal Complexes with HIV/AIDS Inhibitory Properties

Document Type : Review Article

Authors

1 University of Botswana

2 Botho Univeristy

3 Baisago University

Abstract

The management of HIV in the human body has been a major research area in the quest to either find the cure or the preventative scientific measure. The quest to manage the virus has been successful using some organic molecules which target one or more of the stages of the replication cycle of HIV rendering it inhibited to continue infecting other host cells. However, the approach is now moving to use of transition metal complexes to manage the HIV infection in the host cells and this review highlights the relevant contributions of such as HIV/AIDS inhibitors. There have been increasing number of reports on the trends for transition metal complexes with anticancer and antimicrobial activity hence this probed the need of such a review. Complexes of vanadium, manganese, iron, copper, cobalt, nickel, zinc, ruthenium, platinum and gold have been reported to be active against HIV-1 virus. The complexes discussed in this review showed anti-viral activity compared to the vehicle control.

Keywords


[1] K. Benjamin Garbutcheon-Singh, M. P. Grant, B. W. Harper, et al. Transition Metal Based Anticancer Drugs. Curr Top Med Chem. 11 (2011) 521-542.
[2] C. M. Che, F. M. Siu, Metal complexes in medicine with a focus on enzyme inhibition. Curr Opin Chem Biol. 14 (2010) 255-261.
[3] R. W. Y. Sun, D. L. Ma, E. L. M. Wong, C. M. Che, Some uses of transition metal complexes as anti-cancer and anti-
HIV agents. Dalt Trans. 43 (2007) 4884-4892.
[4] T. W. Hambley, Developing new metal-based therapeutics: Challenges and opportunities. Dalt Trans. 43 (2007) 4929-4937.
[5] B. Lu, D. Ennis, R. Lai, et al. Enhanced Sensitivity of
Insulin-resistant Adipocytes to Vanadate is Associated with Oxidative Stress and Decreased Reduction of Vanadate (+5) to Vanadyl (+4). J Biol Chem. 276 276 (2001) 35589-35598.
[6] S. Trudel, M. R. Paquet, S. Grinstein, Mechanism of vanadate-induced activation of tyrosine phosphorylation and of the respiratory burst in HL60 cells. Role of reduced oxygen metabolites. Biochem J. 276 (1991) 611-619.
[7] H. Sakurai, M. Nakai, T. Miki, K. Tsuchiya, J. Takada, R. Matsushita, DNA cleavage by hydroxyl radicals generated in a vanadyl ion-hydrogen peroxide system. Biochem Biophys Res Commun. 189 (1992) 1090-1095.
[8] K. H. Thompson, C. Orvig, Coordination chemistry of vanadium in metallopharmaceutical candidate compounds. Coord Chem Rev. 219 (2001) 1033-1053.
[9] O. J. D’Cruz, Y. Dong, F. M. Uckun, Potent dual anti-HIV and spermicidal activities of novel oxovanadium(V) complexes with thiourea non-nucleoside inhibitors of HIV-1 reverse transcriptase. Biochem Biophys Res Commun. 302 (2003) 253-264.
[10] A. Bacchi, M. Carcelli, C. Compari, et al. HIV-1 in strand transfer chelating inhibitors: A focus on metal binding. Mol Pharm. 8 (2011) 507-519.
[11] J. Didierjean, C. Isel, F. Querre, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones. Antimicrob Agents Chemother. 49 (2005) 4884-4894.
[12] B. S. Van Asbeck, N. A. Georgiou, T. Van der Bruggen, M. Oudshoorn, H. Nottet, J. Marx, Review Anti-HIV effect of iron chelators: different mechanisms involved. J Cinical Virol. 20 (2001) 141-147.
[13] C. Sappey, J. R. Boelaert, S. Legrand-Poels, C. Forceille, A. Favier, J. Piette, Iron chelation decreases NF-κB and HIV type 1 activation due to oxidative stress. AIDS Res Hum Retroviruses. 11 (1995) 1049-1061.
[14] E. C. Moore, M. S. Zedeck, K. C. Agrawal, A. C. Sartorelli, Inhibition of Ribonucleoside Diphosphate Reductase by 1-Formylisoquinoline Thiosemicarbazone and Related Compounds. Biochemistry. 9 (1970) 4492-4498.
[15] S. M. Hecht, RNA Degradation by Bleomycin, a Naturally Occurring Bioconjugate. Bioconjug Chem. 5 (1994) 513-526.
[16] N. Georgiou, T. van der Bruggen, M. Oudshoorn, H. Nottet, J. Marx, S. van Asbeck, Inhibition of Human Immunodeficiency Virus Type 1 Replication in Human Mononuclear Blood Cells by the Iron Chelators Deferoxamine, Deferiprone, and Bleomycin. J Infect Dis. 181 (2000) 484-490.
[17] A. R. Karlström, R. L. Levine, Copper inhibits the protease from human immunodeficiecy virus 1 by both cysteine-dependent and cysteine-independent mechanisms. Proc Natl Acad Sci USA. 88 (1991) 5552-5556.
[18] N. V. Loginova, T. V. Koval’chuk, G. I. Polozov, et al. Synthesis, characterization, antifungal and anti-HIV activities of metal(II) complexes of 4,6-di-tert-butyl-3-[(2-hydroxyethyl)thio]benzene-1,2-diol. Eur J Med Chem. 43 (2008) 1536-1542.
[19] S. A. Galal, A. S. Abd El-All, K. H. Hegab, A. A. Magd-El-Din, N. S. Youssef, H. I. El-Diwani, Novel antiviral benzofuran-transition metal complexes. Eur J Med Chem. 45 (2010) 3035-3046.
[20] S. García-Gallego, M. J. Serramía, E. Arnaiz, et al.
Transition-metal complexes based on a sulfonate-containing N-donor ligand and their use as HIV antiviral agents. Eur J Inorg Chem. 10 (2011) 1657-1665.
[21] F. Lebon, N. Boggetto, M. Ledecq, et al. Metal-organic compounds: a new approach for drug discovery. N1-(4-methyl-2-pyridyl)-2,3,6-trimethoxybenzamide copper(II) complex as an inhibitor of human immunodeficiency virus 1 protease. Biochem Pharmacol. 63 (2002) 1863-1873.
[22] G. Pelosi, F. Bisceglie, F. Bignami, et al. Antiretroviral activity of thiosemicarbazone metal complexes. J Med Chem. 53 (2010) 8765-8769.
[23] Q. Wang, Y. T. Wang, S. P. Pu, Y. T. Zheng, Zinc coupling potentiates anti-HIV-1 activity of baicalin. Biochem Biophys Res Commun. 324 (2004) 605-610.
[24] E. De Clercq, Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV)
infection. Med Res Rev., 20 (2000) 323-349.
[25] B. Q. Li, T. Fu, Y. Dongyan, J. A. Mikovits, F. W. Ruscetti, J. M. Wang, Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem Biophys Res Commun. 276 (2000) 534-538.
[26] I. Neves, A. L. Bertho, V. G. Veloso, D. V. Nascimento, D. Campos-Mello, M. G. Morgado, Improvement of the lymphoproliferative immune response and apoptosis inhibition upon in vitro treatment with zinc of peripheral blood mononuclear cells (PBMC) from HIV+ individuals. Clin Exp Immunol. 111 (1998) 264-268.
[27] Y. Haraguchi, H. Sakurai, S. Hussain, B. M. Anner, H. Hoshino, Inhibition of HIV-1 infection by zinc group metal compounds. Antiviral Res., 43 (1999) 123-133.
[28] A. Ross, J. Choi, T. M. Hunter, et al. Zinc(II) complexes of constrained antiviral macrocycles. Dalt Trans. 41 (2012) 6408-6418.
[29] E. Wong, R. W. Y. Sun, N. P. Y. Chung, C. L. S. Lin, N. Zhu, C. M. Che, A mixed-valent ruthenium-oxo oxalato cluster Na7[Ru 4(μ3-O)4(C2O4) 6] with potent anti-HIV activities. J Am Chem Soc., 128 (2006) 4938-4939.
[30] J. S. Oxford, M. A. Zuckerman, E. Race, R. Dourmashkin, K. Broadhurst, P. M. Sutton, Sodium deoxycholate exerts a direct destructive effect on HIV and influenza viruses in vitro and inhibits retrovirus-induced pathology in an animal model. Antivir Chem Chemother. 5 (1994) 176-181.
[31] C. J. Elias, L. L. Heise, Challenges for the development of female-controlled vaginal microbicides. AIDS. 8 (1994) 1-9.
[32] A. N. Vzorov, D. Bhattacharyya, L. G. Marzilli, R. W. Compans, Prevention of HIV-1 infection by platinum triazines. Antiviral Res., 65 (2005) 57-67.
[33] N. A. Al-Masoudi, B. A. Saleh, N. A. Karim, A. Y. Issa, C. Pannecouque, Synthesis and Anti-HIV Activity of New 2-Thiolumazine and 2-Thiouracil Metal Complexes. Heteroat Chem. 22 (2011) 44-50.
[34] P. N. Fonteh, F. K. Keter, D. Meyer, New bis(thiosemicarbazonate) gold(III) complexes inhibit HIV replication at cytostatic concentrations: Potential for incorporation into virostatic cocktails. J Inorg Biochem., 105 (2011) 1173-1180.
[35] H. Beraldo, D. Gambino, The Wide Pharmacological Versatility of Semicarbazones, Thiosemicarbazones and Their Metal Complexes. Mini-Reviews Med Chem. 4 (2004) 31-39.
[36] W. Hernándeza, J. Paz, A. Vaisberg, E. Spodine, R. Richter, L. Beyer, Synthesis, characterization, and in vitro cytotoxic activities of benzaldehyde thiosemicarbazone derivatives and their palladium (II) and platinum (II) complexes against various human tumor cell lines. Bioinorg Chem Appl. (2008) 690952.
[37] V. Mishra, S. N. Pandeya, C. Pannecouque, M. Witvrouw, E.
De Clercq, Anti-HIV activity of thiosemicarbazone and semicarbazone derivatives of (±)-3-menthone. Arch Pharm (Weinheim). 335 (2002) 183-186.
[38] S. P. Pricker, Medical uses of gold compounds: Past, present and future. Gold Bull., 29 (1996) 53-60.
[39] P. N. Fonteh, F. K. Keter, D. Meyer, I. A. Guzei, J. Darkwa,
[40] Tetra-chloro-(bis-(3,5-dimethylpyrazolyl)methane)gold(III)
chloride: An HIV-1 reverse transcriptase and protease inhibitor. J Inorg Biochem. 103 (2009) 190-194.
[41] M. Mphahlele, M. Papathanasopoulos, M. A. Cinellu, et al. Modification of HIV-1 reverse transcriptase and integrase activity by gold(III) complexes in direct biochemical assays. Bioorganic Med Chem. 20 (2012) 401-407.