Boron nitride nanocone as an adsorbent and senor for Ampicillin: A Computational Study

Document Type : Research Article


1 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

2 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran


In this research, the performance of boron nitride nanocone for the detection and removal of ampicillin was investigated by infra-red (IR), natural bond orbital (NBO), frontier molecular orbital (FMO) computations. The calculated values of adsorption energy showed the interaction of ampicillin with BN nanocone is experimentally possible. The calculated values of Gibbs free energy and thermodynamic equilibrium constant showed the adsorption process is spontaneous and irreversible. The calculated values of enthalpy changes and specific heat capacity showed ampicillin adsorption is exothermic and BN nanocone can be used for the construction of a new thermal sensor for the detection of ampicillin. The effect of temperature on the thermodynamic parameters was also evaluated and the results indicated ampicillin adsorption is more favorable in room temperature. The NBO results demonstrated in both of the studied configurations a monovalent chemical bond is formed between the nanostructure and the adsorbate and the interaction process is chemisorption. The DOS spectrums showed the bandgap of BN nanocone increased from 1.888 (eV) to 7.030 (eV) which proved this nanomaterial is an appropriate electrochemical sensing material for detection of ampicillin. Some important structural parameters such as dipole moment, electrophilicity, maximum charge capacity, chemical hardness and chemical potential were also calculated and discussed in detail.


[1] I. Robinson, G. Junqua, R. Van Coillie and O. Thomas, Trends in the detection of pharmaceutical products, and their impact and mitigation in water and wastewater in North America. Anal. Bioanal. Chem., 387 (2007) 1143–1151.
[2] A. Ghauch, A. Tuqan and H. A. Assi, Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ. Pollut., 157 (2009) 1626–1635.
[3] A. L. Spongberg and J. D. Witter, Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci. Total Environ., 397 (2008) 148–157.
[4] E. Yabalak, Degradation of ticarcillin by subcritical water oxidation method: application of response surface methodology and artificial neural network modeling. J. Environ. Sci. Heal. A, 53 (2018) 975–985.
[5] M. Ahmadi, T. Madrakian and A. Afkhami, Solid phase extraction of amoxicillin using dibenzo-18-crown-6 modified magnetic-multiwalled carbon nanotubes priortoits spectrophotometric determination. Talanta, 148 (2016) 122–128.
[6] F. J. Benitez, J. L. Acero, F. J. Real, G. Roldan and F. Casas, (2011). Comparison of differentchemical oxidation treatments for the removal of selected pharmaceuticals in water matrices. Chem. Eng. J., 168 (2011) 1149–1156.
[7] S. M. Mitchell, J. L. Ullman, A. L. Teel and R.J. Watts, Hydrolysis of amphenicol and marcrolide antibiotics: Chloramphenicol, florfenicol, spiramycin, and tylosin. Chemosphere.,134 (2015) 504–511.
[8] Y. Ji, Y. Shi, W. Dong, X. Wen, M. Jiang and J. Lu, Thermo-activated persulfate oxidation system for tetracycline antibiotics degradation in aqueous solution. Chem. Eng. J., 298 (2016) 225–233.
[9] R. S. Bangari and N. Sinha, Adsorption of tetracycline, ofloxacin and cephalexin antibiotics on boron nitride nanosheets from aqueous solution. J. Mol. Liq., 293 (2019) 1–12.
[10] B. H. Hameed, A. M. Din and A. L. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies, J. Hazard. Mater., 141 (2007) 819–825.
[11] E. Alvarez-Ayuso, A. Garc─▒a-Sánchez and X. Querol, Purification of metal electroplating wastewaters using zeolites. Water Res., 37 (2003) 4855–4862.
[12] Y. Yao, B. He, F. F. Xu and X. F. Chen, Equilibrium and kinetic studies of methylorange adsorption on multiwalled carbon nanotubes. Chem. Eng. J., 170 (2011) 82–89.
[13] S. Zeng, K. Tang, T. Li and Z. Liang. 3D flower-like Y2O3: Eu3+ nanostructures: template-free synthesis and its luminescence properties. J. Colloid Interface Sci., 316 (2007) 921–929.
[14] A. K. Rahardjo, M. J. J. Susanto, A. Kurniawan, N. Indraswati and S. Ismadji, Modified Ponorogo bentonite for the removal of ampicillin from wastewater. J. Hazard. Mater., 190 (2011) 1001–1008.
[15] P. Del Vecchio, N. K. Haro, F.S. Souza, N. R. Marcílio and L. A. Féris, Ampicillin removal by adsorption onto activated carbon: kinetics, equilibrium and thermodynamics. Water Sci Technol., 79 (2019) 2013–2021.
[16] F. S. Souza and L. A. Féris, Consumption-based approach for pharmaceutical compounds in a large hospital. Environ. Technol., 38 (2017) 2217–2223.
[17] X. Weng, W. Cai, R. Lan, Q. Sun and Z. Chen, Simultaneous removal of amoxicillin, ampicillin and penicillin by clay supported Fe/Ni bimetallic nanoparticles. Environ. Pollut., 236 (2018) 562–569.
[18] V. Nairi, L. Medda, M. Monduzzi and A. Salis, Adsorption and release of ampicillin antibiotic from ordered mesoporous silica. J. Colloid Interface Sci., 497 (2017) 217–7225.
[19] S. Yu, X. Wang, H. Pang, R. Zhang, W. Song, D. Fu, T. Hayat and X. Wang, Boron nitride-based materials for the removal of pollutants from aqueous solutions: A review. Chem. Eng. J., 333 (2018) 343–360.
[20] S. N. Naess, A. Elgsaeter, G. Helgesen and K. D. Knudsen, (2009) Carbon nanocones: wall structure and morphology. Sci. Tchnol. Adv. Mater., 10 (2009) 065002.
[21] M. Mirzaei, M. Yousefi and M. Meskinfam, Chemical shielding properties for BN, BP, AI N, and AIP nanocones: DFT studies, Superlattices Microst., 51 (2012) 809–813.
[22] Y. Li, Y. Tian, Ch. Yang, K. Cai and D. Zhang, Torsional properties of boron nitride nanocones with different cone heights, disclination angles and simulation temperatures
Nano, 10 (2015) 1550097.
[23] G. Lian, X. Zhang, S. Zhang, D. Liu, D. Cui and Q. Wang, Controlled fabrication of ultrathin-shell BN hollow spheres with excellent performance in hydrogen storage and wastewater treatment. Energy Environ. Sci., 5 (2012) 7072-7080.
[24] X. Zhang, G. Lian, S. Zhang, D. Cui and Q. Wang, Boron nitride nanocarpets: controllable synthesis and their adsorption performance to organic pollutants. Cryst. Eng. Comm., 14 (2012) 4670–4676.
[25] nanotube Modeler J. Crystal. Soft., 2014 software.
[26] GaussView, Version 6.1, R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
[27] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[28] N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem., 29 (2008) 839-845.
[29] R. Ahmadi, M. R. Jalali Sarvestani, Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. Phys. Chem. B., 14 (2020) 198-208.
[30] M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study. Asian J. Nanosci. Mater., 3 (2020) 103-114.
[31] M. R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb, Quetiapine Adsorption on the Surface of Boron Nitride Nanocage (B12N12): A Computational Study. Int. J. New. Chem., 7 (2020) 87-100.
[32] M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory. Int. J. New. Chem., 4 (2017) 101-110.
[33] M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of Tetryl on the Surface of B12N12: A Comprehensive DFT Study. Chem. Methodol., 4 (2020) 40-54.
[34] S. Majedi, F. Behmagham, M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett., 1 (2020) 19-24.
[35] H. G. Rauf, S. Majedi, E. A. Mahmood, M. Sofi, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem. Rev. Lett., 2 (2019) 140-150.
[36] R. A. Mohamed, U. Adamu, U. Sani, S. A. Gideon, A. Yakub, Thermodynamics and kinetics of 1-fluoro-2-methoxypropane vs Bromine monoxide radical (BrO): A computational view. Chem. Rev. Lett., 2 (2019) 107-117.
[37] S. Majedi, H. G. Rauf, M. Boustanbakhsh, DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett. 2 (2019) 176-186.
[38] R. Moladoust, Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem. Rev. Lett., 2 (2019) 151-156.
[39] M. R. Jalali Sarvestani, Z. Doroudi, Fullerene (C20) as a potential sensor for thermal and electrochemical detection of amitriptyline: A DFT study. J. Chem. Lett., 1 (2020) 63-68.
[40] S. Majedi, F. Behmagham, M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett. 1 (2020) 19-24.
[41] M. R. Jalali Sarvestani, S. Majedi, A DFT study on the interaction of alprazolam with fullerene (C20). J. Chem. Lett. 1 (2020) 32-38.