A mini-review on importance and role of trace elements in the human organism

Document Type : Review Article

Author

Higher School of Applied Sciences of Tlemcen, Bel Horizon, Tlemcen, Algeria

Abstract

Trace elements are minerals present in living tissues in minute quantities. Some of them are known to be nutritionally essential and the remainder is considered to be nonessential. The body requires certain essential elements and their deficiency or excess may result in serious dysfunction of the body and even death in extreme cases. The low intakes dietary of trace element produce changes in biochemical pathways that can raise the risk of diseases over time. On the other hand, excessive levels, a level higher than needed for biological functions, of these elements can be toxic for the body health. This review evaluates the role and importance of the essential trace element in the human organism. The potential importance of key essential trace elements; Magnesium, Manganese, Iron, Zinc, Copper, Cobalt, Iodine, Selenium, Nickel, Molybdenum and Chromium; and nonessential trace such as Cadmium, Lead, Arsenic and Mercury are discussed.

Keywords


G. Bartzokis, T. A. Tishler, P. H. Lu, et al, Brain ferritin iron may influence age-and gender-related risks of neurodegeneration. Neurobiol. Aging., 28 (2007) 414–423.
[2] L. Zecca, M. B. Youdim, P. Riederer, J. R. Connor, R. R. Crichton, R. R, Iron, brain ageing and neurodegenerative disorders. Nat. Rev. Neurosci., 5 (2004) 863-873.
[3] S. Falah, N. Al-Fartusie, N. Saja, N. Mohssan, Essential Trace Elements and Their Vital Roles in Human Body. Indian. J. Adv. Chem. Sc.,5 (2017) 127-136.
[4] W. Mertz, The essential trace elements. Science., 213(1981) 213:1332–1338.
[5] G. A. Ali Qureshi, S. A. Memon, A. B. Memon, et al, The emerging role of iron, zinc, copper, magnesium and selenium and oxidative stress in health and diseases. Biogenic Amines., 16 (2005) 147–169.
[6] K. Anjana, Trace Elements and Nutrition. Acta. Scientific. Nutritional. Health., 1 (2017) 46.
[7] C. E.Cicero, G. Mostile, R. Vasta, V. Rapisarda, S. S. Signorelli, Metals and neurodegenerative diseases. A systematic review. Environ. Res., 159(2017) 82–94.
[8] T. Liu, Q-B. Lu, L. Yan, et al, Comparative Study on Serum Levels of 10 Trace Elements in Schizophrenia. Plos one., 10(2015) 1-8.
[9] D. Harold, Disease family trees: The possible roles of iodine in goitre, cretinism, multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases and cancers of the thyroid, nervous system and skin. Medical Hypotheses., 24 (1987) 249-263.
[10] L. Rivera, S. Mancía, I. Pérez-Neri, The transition metals Cu and Fe in neurodegenerative diseases. Chemico-Biol Interact., 186 (2010) 99-184.
[11] Q. Pasha, S. A. Malik, M. H. Shah, Statistical analysis of trace metals in the plasma of cancer patients versus controls. J. Haz. Mat., 153 (2008) 21-1215.
[12] A. Blazewicz, W. Dolliver, S. Sivsammye, et al, Determination of Cd, Co, Cu, Fe, Mn, and Zn in thyroid glands of patients with diagnosed nodularuanid using ion chromatography. J. Chromatography B, Anal. Technol. Biomed. Life. Sci., 878 (2010) 34-38.
[13] R. K. Rude, (2010) Magnesium. In: Coates PM, Betz JM, Blackman MR, Cragg GM, Levine M, Moss J, White JD, eds. Encyclopedia of Dietary Supplements. 2nd ed. New York, NY: Informa Healthcare; pp.527-37.
[14] G. K. Schwalfenberg, S. J. Genuis, The Importance of Magnesium in Clinical Healthcare. Scientifica., 2017 (2017) 1-14. [15] P. A. Sarafidis, P. I. Georgianos, A. N. Lasaridis, Diuretics in clinical practice. Part II: Electrolyte and acid-base disorders complicating diuretic therapy. Expert Opinion on Drug Safety., 9 (2010) 259-273.
[16] R. K. Rude, (2012) Magnesium. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR, eds. Modern Nutrition in Health and Disease. 11th ed. Baltimore, Mass: Lippincott Williams & Wilkins., pp. 159-75.
[17] M.Rodriguez-Moran, L. E. Simental Mendia, G. G. Zambrano, F. Guerrero-Romero, The role of magnesium in type 2 diabetes: a brief based-clinical review. Magnes. Res., 24 (2011) 156-162.
[18] H. O. Dickinson, D. Nicolson, F. Campbell, et al, (2006) Magnesium supplementation for the management of primary hypertension in adults. Cochrane. Database. Syst. Rev., pp. 1-58.
[19] L. C. Del Gobbo, F. Imamura, J. H. Y. Wu, et al, Circulating and dietary magnesium and risk of cardiovascular disease: a systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr., 98 (2013) 160-173.
[20] T. Pringsheim, W. Davenport, G. Mackie, et al., Canadian Headache Society guideline for migraine prophylaxis. Can. J. Neurol. Sci., 39 (2012) S1–S59.
[21] H. Geiger, C. Wanner, Magnesium in disease. Clin. Kidney. J., 5 (2012) 25-38.
[22] D. P. Chaudhary, R. Sharma, D. D. Bansal, Implications of magnesium deficiency in Type 2 diabetes: A review. Biol. Trace Elem. Res., 134 (2010) 119-129.
[23] T. Hudali, C. Takkar, Hypocalcemia and hyperkalemia during magnesium infusion therapy in a pre-eclamptic patient. Clin. Case Rep., 3 (2015) 827–831.
[24] R. Srivastava, W. A. Bartlett, I. M. Kennedy, A. Hiney, C. Fletcher, Reflex and reflective testing: defficiency and effectiveness of adding on laboratory tests. Ann. Clin. Biochem., 47 (2010) 223-227.
[25] A. A. Ismail, On the defficiency and eوٴectiveness of added-on serum magnesium in patients with hypokalaemia and
hypocalcaemia. Ann. Clin. Biochem., 47 (2010) 492-493.
[26] S. Castiglioni, A. Cazzaniga, W. Albisetti, J. A. M. Maier, Magnesium and osteoporosis: current state of knowledge and future research directions. Nutrients., 5 (2013) 3022–3033.
[27] M. S. Seelig, Consequences of magnesium deficiency on the enhancement of stress reactions; preventive and therapeutic implications (A review). J. Am Coll. Nutr., 13 (1994) 429–446.
[28] F. Ekici, Ş. Korkmaz, E. E. Karaca et al, The role of magnesium in the pathogenesis and treatment of glaucoma, Int. Sch. Res. Notices., 2014 (2014) 1-7.
[29] R. Medalle, C. Waterhouse, T. J. Hahn, Vitamin D resistance in magnesium deficiency. Am. J. Clin. Nutr., 29 (1976) 854–858.
[30] Q. Deng, J. Liu, Q. Li et al, Interaction of occupational manganese exposure and alcohol drinking aggravates the increase of liver enzyme concentrations from a cross-sectional study in China. Environmental Health., 12 (2013) 1-6.
[31] S. Bouabid, A. Tinakoua, N. Lakhdar‐Ghazal, A. Benazzouz, Manganese neurotoxicity: behavioral disorders associated with dysfunctions in the basal ganglia and neurochemical transmission. J. Neurochem., 136 (2016) 677–691.
[32] J. L. Aschner, M. Aschner, Nutritional aspects of manganese homeostasis. Mol. Aspects. Med., 26 (2005) 353–362.
[33] A. Takeda, Manganese action in brain function. Brain Res. Rev., 41 (2003) 79–87.
[34] C. Zwingmann, D. Leibfritz, A. S. Hazell, Brain energy metabolism in a sub-acute rat model of manganese neurotoxicity: an ex vivo nuclear magnetic resonance study using [1-13C] glucose. Neurotoxicology., 25 (2004) 573–587.
[35] E. Y. Shishova, L. Di Costanzo L, F. A. Emig, D. E. Ash, D. W. Christianson, Probing the specificity determinants of amino acid recognition by arginase. Biochemistry., 48 (2009) 121–131.
[36] M. Aschner, J. R. Connor, D. C. Dorman, E. A. Malecki, K. E. Vrana, (2002) Manganese in Health and Disease. In: Massaro E.J. (eds) Handbook of Neurotoxicology. Humana Press, Totowa, NJ. pp.79-87.
[37] Y. K. Lee, E. S. Lyu, S. Y. Oh, et al, Daily Copper and Manganese Intakes and Their Relation to Blood Pressure in Normotensive Adults. Clin. Nutr. Res., 4 (2015) 256-266.
[38] M. Aschner, K. M. Erikson, D. C. Dorman, Manganese dosimetry: species differences and implications for neurotoxicity. Crit. Rev. Toxicol., 35 (2005) 1–32.
[39] T. K. Dutta, V. Mukta, Trace elements. Medicine Update., 22 (2012) 353-357.
[40] K. O. Soetan, C. O. Olaiya, O. E. Oyewole, The importance of mineral elements for humans, domestic animals and plants: A review. Afr. J. Food Sci., 4 (2010) 200-222.
[41] J. L. Greger, Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers. Neurotoxicology., 20 (1999) 205–212.
[42] K. Sriram, G. X. Lin, A. M. Jefferson et al, Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB Journal., 24 (2010) 4989–5002, 2010.
[43] A. B. Bowman, G. F. Kwakye, E. H. Hernández, M. Aschner, Role of manganese in neurodegenerative diseases. J. Trace. Elem. Med. Biol., 25 (2011) 191-203.
[44] T. R. Guilarte, Manganese and Parkinson's disease: a critical review and new findings. Environ. Health. Perspect., 118 (2010) 1071‐1080.
[45] T. Yawei, Y. Huan, T. Xiaosheng, W. Hecheng, Z. Ting, High Manganese, A Risk for Alzheimer's Disease: High Manganese Induces Amyloid-β Related Cognitive Impairment. Journal of Alzheimer's Disease., 42 (2014) 865-878.
[46] K. Du, M. Liu, Y. Pan, X. Zhong, M. Wei, Association of Serum Manganese Levels with Alzheimer’s Disease and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. Nutrients., 9(2017) 1-12.
[47] G. Paglia, O. Miedico, A. Cristofano, et al, Distinctive pattern of serum elements during the progression of Alzheimer's disease. Sci. Rep., 6 (2016) 1-12
[48] A. C. Martins, P. Morcillo, O. M. Ijomone, et al, New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. Int J Environ Res Public Health., 16 (2019) 1-16.
[49] S. H. Lee, H. A. Jouihan, R. C. Cooksey et al, Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology., 154 (2013) 1029–1038.
[50] E. Burlet, S. K. Jain, Manganese supplementation increases adiponectin and lowers ICAM-1 and creatinine blood levels in Zucker type 2 diabetic rats, and downregulates ICAM-1 by upregulating adiponectin multimerization protein (DsbA-L) in endothelial cells. Mol. Cell. Biochem., 429 (2017) 1–10
[51] E. Burlet, S. K. Jain, Manganese supplementation reduces high glucose-induced monocyte adhesion to endothelial cells and endothelial dysfunction in Zucker diabetic fatty rats. J. Biol. Chem., 288 (2013) 6409–6416.
[52] M. Roger, (2011) The Minerals You Need, USA:Safe Goods Publishing, p 21.
[53] P. J. Aggett, (2012) Iron. In: J. W. Erdman, I. A. Macdonald, S. H. Zeisel, editors. Present Knowledge in Nutrition, 10th ed. Washington, DC: Wiley-Blackwell, pp. 506-520.
[54] L. E. Murray-Kolbe, J. Beard, (2010) Iron. In: P. M. Coates, J. M. Betz, M. R. Blackman, G. M. Cragg, M. Levine, J. Moss, J. D. White, (Ed.), Encyclopedia of Dietary Supplements, 2nd ed. London and New York: Informa Healthcare, p432-438
[55] R. Casiday, F. Regina, (2007) Iron Use and Storage in the Body: Ferritin and Molecular Representations, St. Louis, USA: Department of Chemistry, Washington University
[56] A. T. McKie, D. Barrow, G. O. Latunde-Dada, et al, An iron-regulated ferric reductase associated with the absorption of dietary iron. Science., 291 (2001) 1755–1759.
[57] R. E. Fleming, P. Ponka, Iron overload in human disease. Engl. J. Med., 366 (2012) 348–359.
[58] G. J. Anderson, D. M. Frazer, Current understanding of iron homeostasis. Am. J. Clin. Nutr.,106 (2017) 1559S–1566S.
[59] R. C. Hider, X. Kong, Iron: effect of overload and deficiency. Met. Ions. Life. Sci., 13 (2013) 229-294.
[60] W. Y. Ong, A. A. Farooqui, (2005). Iron, neuroinflammation, and Alzheimer’s disease. J. Alzheimers Dis., 8 (2005) 183–200.
[61] K. Klipstein-Grobusch, D. E. Grobbee, J. H. den Breeijen, et al, Dietary iron and risk of myocardial infarction in the Rotterdam Study. Am. J. Epidemiol., 149 (1999) 421–428.
[62] R. G. Stevens, B. I. Graubard, M. S. Micozzi, K. Neriishi, B. S. Blumberg, Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int. J. Cancer., 56 (1994) 364–369.
[63] N. Bresgen, P. M. Eckl, Oxidative stress and the homeodynamics of iron metabolism. Biomolecules., 5 (2015) 808‐847.
[64] M. U. Imam, S. Zhang, J. Ma, H. Wang, F. Wang, Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients., 9 (2017) 1-19.
[65] T. Kawamura, Y. Ogawa, Y. Nakamura, et al, Severe dermatitis with loss of epidermal Langerhans cells in human and mouse zinc deficiency. J. Clin. Invest., 122 (2012) 722-732.
[66] T. Attar, Levels of serum copper and zinc in healthy adults from the west of Algeria. SPC Journal of Environmental Sciences., 1 (2019) 26-28.
[67] H. Haase, L. Rink, Multiple impacts of zinc immune function. Metallomics., 6 (2014) 1175-1180.
[68] T. D. Watson, Diet and skin disease in dogs and cats. J. Nutr., 128 (1998) 2783S-2789
[69] J. Olechnowicz, A. Tinkov, A. Skalny, J. Suliburska, Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci.,68 (2018) 19–31.
[70] K. Grüngreiff, D. Reinhold, H. Wedemeyer, The role of zinc in liver cirrhosis. Ann. Hepatol., 15 (2016) 7-16.
[71] Y. S. Bae, N. D. Hill, Y. Bibi, J. Dreiher, A. D. Cohen, Innovative uses for zinc in dermatology. Dermatologic Clinics., 28 (2010) 587-597.
[72] J. R. Ricketts, M. J. Rothe, J. M. Grant-Kels, Nutrition and psoriasis. Clin. Dermatol., 28 (2010) 615-626.
[73] M. Jen, A. C. Yen, Syndromes associated with nutritional deficiency and excess. Clin. Dermatol., 28 (2010) 669-685.
[74] T. Attar, N. Medjati, Y. Harek, L. Larabi, Determination of Zinc levels in Healthy Adults from the West of Algeria by Differential Pulse Anodic Stripping Voltammetry. Journal of Advances in Chemistry., 6 (2013) 855-860.
[75] J. Z. Williams, A. Barbul, Nutrition and wound healing. Surg. Clin. North. Am., 83 (2003) 571-596
[76] K. Grüngreiff, D. Reinhold, Zinc in human health. Amsterdam: IOS Press; 2011. p. 473-492
[77] K. Grüngreiff, T. Gottstein, D. Reinhold, Zinc in Liver Fibrosis. OBM Hepatology and Gastroenterology., 2019, 3 (2019) 1-18.
[78] S. M. A. El-Ashmony,H. K. Morsi, A. M. Abdelhafez, Effect of zinc supplementation on glycemic control, lipid profile, and renal functions in patients with type II diabetes: a single blinded, randomized, placebo-controlled, trial. J. Biol. Agric. Health., 2 (2012) 33-
[79] W. Maret, H. H. Sandstead, Zinc requirements and the risks and benefits of zinc supplementation. J. Trace. Elem. Med. Biol., 20 (2006) 3-18.
[80] U. Satyanarayana, U. Chakrapani, Essentials of Biochemistry. 2nd ed. Kolkata: Arunabha Sen Book and Allied (P) Ltd., 2008. pp.210-27.
[81] L. M. Plum, L. Rink, H. Haase, The essential toxin: impact of zinc on human health. Int. J. Environ. Res. Public. Health., 7 (2010) 1342-1365.
[82] C. Devirgiliis, P. D. Zalewski, G. Perozzi, C. Murgia, Zinc fluxes and zinc transporter genes in chronic diseases. Mutat. Res., 622 (2007) 84-93.
[83] S. R. Lee. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev., 2018 (2018) 1-11.
[84] T. J. Porea, J. W. Belmont, D. H. Mahoney, Zinc-induced anemia and neutropenia in an adolescent. J. Pediatr., 136 (2000) 688- 690.
[85] R. Bartzatt, Neurological Impact of Zinc Excess and Deficiency In vivo. European J. Nutr. Food Saf., 7 (2017) 155-160.
[86] M. R. Islam, J. Attia, L. Ali, et al, Zinc supplementation for improving glucose handling in pre-diabetes: A double blind randomized placebo controlled pilot study. Diabetes. Res. Clin. Pract., 115 (2016) 39-46.
[87] G. Borkow, J. Gabbay, Copper as a biocidal tool. Curr. Med. Chem., 12 (2005) 2163-2175.
[88] M. Angelova, S. Asenova, V. Nedkova, R. Koleva-Kolarova, Copper in the human organism. Trakia of Journal Sciences., 9 (2011) 88-98
[89] S. La Fontaine, J. M. Quinn, S. S. Nakamoto, et al, Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryotic Cell., 1 (2002) 736-757.
[90] T. Attar, Y. Harek, L. Larabi, Determination of copper in whole blood by differential pulse adsorptive stripping voltammetry. Mediterr. J. Chem., 2 (2014) 691-700.
[91] H. K. Jack, L. Svetlana, Copper Transport in Mammalian Cells: Special Care for a Metal with Special Needs. J. Biol. Chem., 284 (2009) 25461-25465.
[92] T. Attar, N. Dennouni-Medjati, Y. Harek, L. Larabi. The Application of Differential Pulse Cathodic Stripping Voltammetry in the Determination of Trace Copper in Whole Blood. Journal of Sensors and Instrumentation., 1 (2013) 31-38.
[93] T. Attar, B Messaoudi, N Benhadria, DFT Theoretical Study of Some Thiosemicarbazide Derivatives with Copper. Chemistry & Chemical Technology., 14 (2020) 20-25.
[94] V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health. J. Pharmacogn. Rev., 4 (2010) 118-126.
[95] I. Malave, J. Rodriguez, Z. Araujo, I. Rojas, Effect of zinc on the proliferative, response of human lymphoeytes: Mechanism of its nitrogenic action. Int. Immunopharmacol., 20 (1990) 1-10.
[96] T. Attar, Y. Harek, L. Larabi. Determination of Ultra Trace Levels of Copper in Whole Blood by Adsorptive Stripping Voltammetry. B. Korean. Chem. Soc., 57(2013)568-573.
[97] M. G. Skalnaya, A. V. Skalny, Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p.
[98] D. M. Williams, Copper deficiency in humans. Semin. Hematol., 20 (1983) 118–128.
[99] T. Attar., Y. Harek., N. Dennouni-Medjati., L. Larabi. Determination of copper levels in whole blood of healthy subjects by anodic stripping voltammetry. International Journal of Analytical and Bioanalytical Chemistry, 2 (2012) 160-164.
[100]N. Kumar, P. A. Low, Myeloneuropathy and anemia due to copper malabsorption. J. Neurol., 251 (2004) 747–749.
[101]D. P. Relling, Dietary interaction of high fat and marginal copper deficiency on cardiac contractile function. Obesity Silver. Spring., 15 (2007) 1242–1257.
[102]M. Araya, F. Pizarro, M. Olivares, M. Arredondo, M. Gonzalez, Understanding copper homeostasis in humans and copper effects on health. Biol. Res., 39 (2006) 183-187.
[103]M. Bonham, M. Jacqueline, M. H. Bernadette, J. J. Strain, The immune system as a physiological indicator of marginal copper status. Br. J. Nutr., 87 (2002) 393–403.
[104]J. R. Turnlund, R. A. Jacob, C. L. Keen et al, Long-term high copper intake: Effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr., 79 (2004) 1037-1044
[105] L. Prashanth, K. K. Kattapagari, R. T. Chitturi, V. R. Baddam, L. K. Prasad. A review on role of essential trace elements in health and disease. J. NTR. Univ. Health. Sci., 4 (2015) 75-85.
[106] E. Kilic, A. Demiroglu, R. Saraymen, E. Ok, Comparative quantative analysis of zinc, magnesium, and copper content in the scalp hair of healthy people and breast cancer patients. J. Trace. Elem. Med. Biol., 17 (2004) 175-180.
[107]D. Quilliot, B. Dousset, B. Guerci, et al, Evidence that diabetes mellitus favors impaired metabolism of zinc, copper, and selenium in chronic pancreatitis. Pancreas 2001; 22: 299-306.
[108] S. Bherwani, A. K. Ahirwar, A. S. Saumya, et al, Effect of serum copper levels in type 2 diabetes mellitus with nephropathy: a case control study in north indian population. Int. J. Adv. Res., 5(2017) 420-424.
[109]Y. Zhang, V. N. Gladyshev, Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev., 109 (2009) 4828-4861.
[110]R. Hall, R. G. Malia. In Textbook of Medical Laboratory Haematology. 1st ed. Butterworths, London. p. 32.1982
[111]L.A. Maier, C. Glazer, K. PachecoInterstitial lung disease and other occupational exposures (hard metal lung disease) M. Schwartz, T. King (Eds.), Interstitial Lung Disease (fifth ed.), People's Medical Publishing House, China (2011), pp. 581-593
[112]M. K. Volders, In vitro expression of hard metal dust (WC-Co) responsive genes in human peripheral blood mononucleated cells. Toxicol. Appl. Pharmacol., 227 (2008) 299-312.
[113]E. Prescott, B. Netterstrøm, J. Faber, et al, Effect of occupational exposure to cobalt blue dyes on the thyroid volume and function of female plate painters. Scand. J. Work. Environ. Health., 18 (1992) 101-104.
[114]S. M. Bradberry, J. M. Wilkinson, R. E. Ferner, Systemic toxicity related to metal hip prostheses. Clin. Toxicol. (Phila)., 52 (2014) 837-847.
[115]J. Stuckert, S. Nedorost, Low-cobalt diet for dyshidrotic eczema patients. Contact Dermatitis., 59 (2008) 361–365.
[116]F. Saker, J. Ybarra, P. Leahy, et al, Glycemia-lowering effect of cobalt chloride in the diabetic rat: role of decreased gluconeogenesis. Am. J. Physiol., 274 (1998) E984–E991.
[117]A. L’Abbate, D. Neglia, C. Vecoli, et al, Beneficial effect of heme oxygenase-1 expression on myocardial ischemia-reperfusion involves an increase in adiponectin in mildly diabetic rats. Am. J. Physiol. Heart. Circ. Physiol., 293 (2007) H3532–H3541.
[118]D. G. Johns, D. Zelent, Z. Ao, et al, Heme-oxygenase induction inhibits arteriolar thrombosis in vivo: effect of the non-substrate inducer cobalt protoporphyrin. Eur. J. Pharmacol., 606 (2009) 109–114.
[119]T. A. Burns, K. A. Dembek, A. Kamr, et al, Effect of Intravenous Administration of Cobalt Chloride to Horses on Clinical and Hemodynamic Variables. J. Vet. Intern. Med., 32 (2017) 441–449.
[120]A. Mobasheri, C. J. Proudman, Cobalt chloride doping in racehorses: Concerns over a potentially lethal practice. Vet. J., 205 (2015) 335–338.
[121]W. Xue, L. Cai, Y. Tan, et al, Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am. J. Pathol., 177 (2010) 97–105.
[122]J. Cao, C. Cecoli, D. Neglia, et al, Cobalt-protoporphyrin improves heart function by blunting oxidative stress and restoring NO synthase equilibrium in an animal model of experimental diabetes. Front. Physiol., 3 (2012) 1-9.
[123]S. Kawamoto, J. P. Flynn, Q. Shi, et al, Allen, Heme oxygenase-1 induction enhances cell survival and restores contractility to unvascularized three-dimensional adult cardiomyocyte grafts implanted in vivo. Tissue. Eng. Part. A., 17 (2011) 1605–1614.
[124]S. Catalani, M. C. Rizzetti, A. Padovani, P. Apostoli, Neurotoxicity of cobalt. Hum. Exp. Toxicol., 31 (2012) 421-437.
[125]V. A. Skalny, I. P. Zaitseva , Y. G. Gluhcheva, et al, Cobalt in athletes: hypoxia and doping – new crossroads. J. Appl. Biomed., 17 (2019) 21–28.
[126]B. Swennen, J. P. Buchet, D. Stanescu, D. Lison, R. Lauwerys, Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Br. J. Ind. Med., 50 (1993) 835–842.
[127]G. Lippi, M. Franchini, G. C. Guidi, Blood doping by cobalt. Should we measure cobalt in athletes. J. Occup. Med. Toxicol., 1 (2006) 1-3.
[128]B. Ebert, W. Jelkmann, Intolerability of cobalt salt as erythropoietic agent. Drug. Test. Anal., 6 (2014) 185–189.
[129] B. Dijkstra, R. S. Prichard, A. Lee, et al, Changing patterns of thyroid carcinoma. Ir. J. Med. Sci., 176 (2007) 87-90.
[130] A. Prete, R. M. Paragliola, S. M. Corsello. Iodine Supplementation: Usage "with a Grain of Salt". Int. J. Endocrinol., 2015 (2015) 1-8.
[131] M. Zimmermann, BurgersteinsMikronaehrstoffe in der Medizin. Praevention und Therapie. Stuttgart: Karl F. HaugVerlag; 2003. pp. 304 p
[132] C. Luongo, L. Trivisano, F. Alfano, D. Salvatore, Type 3 deiodinase and consumptive hypothyroidism: a common mechanism for a rare disease. Front. Endocrinol., 4 (2013) 1-7.
[133] P. R. Larsen, A. M. Zavacki, The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur .Thyroid. J., 1 (2012) 232‐242.
[134] F. A. Tayie, K. Jourdan. Hypertension, Dietary Salt Restriction, and Iodine Deficiency Among Adults. Am. J. Hypertens., 23 (2010) 1095–1102.
[135] D. Führer, K. Mann, J. Feldkamp, et al, [Thyroid dysfunction in pregnancy]. Dtsch. Med. Wochenschr., 139 (2014) 2148-2152.
[136] E. N. Pearce, Iodine deficiency in children. Endocr. Dev., 26 (2014) 130-138.
[137] V. U. Menon, G. Chellan, K. R. Sundaram, et al, Iodine status and its correlations with age, blood pressure, and thyroid volume in South Indian women above 35 years of age (Amrita Thyroid Survey). Indian. J. Endocrinol. Metab., 15 (2011) 309‐315.
[138] J. Zhao, P. Wang, L. Shang, et al, Endemic goiter associated with high iodine intake. Am. J. Public. Health., 90 (2000) 1633-1635.
[139] J. Farebrother, M. B. Zimmermann, M. Andersson, Excess iodine intake: Sources, assessment, and effects on thyroid function. Annals of the New York Academy of Sciences. 1446 (2019) 44-65.
[140] W. Teng, Z. Shan, X. Teng, et al, Effect of iodine intake on thyroid diseases in China. The New England Journal of Medicine. 354 (2006) 2783-2793.
[141] R. Katagiri, X. Yuan, S. Kobayashi, S. Sasaki, Effect of excess iodine intake on thyroid diseases in different populations: A systematic review and meta-analyses including observational studies. PLoS One., 12 (2017) 1-24.
[142] F. R. Mancini, K. Rajaobelina, C. Dow, et al, High iodine dietary intake is associated with type 2 diabetes among women of the E3N-EPIC cohort study. Clinical. Nutrition., 38 (2019) 1651-1656.
[143] D. Oberleas, B. Harland, A. Skalny. [Biological role of macro- and trace elements ments in humans and animals]. Saint Petersburg: Nauka; 2008. 544 p.
[144] M. V. Veldanova, A. V. Skalny, The comparison of ioduria, hair iodine and other trace elements concentration data in children living in different regions of Russia. In: Proceedings of 3rd International Symposium on Trace Elements in Human: New Perspectives; 4-6 October 2001; Athens, Greece. Athens; 2001. p. 522–528.
[145] P. Ghirri, S. Lunardi, A. Boldrini. Iodine supplementation in
the newborn. Nutrients., 6 (2014) 382-390.
[146] T. Attar, N. Ferrah, N. Dennouni, A. Reguig, Y. Harek, L. Larabi, Serum concentration of selenium among healthy adult in the west of Algeria. Der Pharma Chemica., 7 (2015) 102-104.
[147]M. Roman,P. Jitaru, C. Barbante, Selenium biochemistry and its role for human health. Metallomics., 6 (2014) 25–54.
[148]M. P. Rayman, Selenium and human health. Lancet.,379 (2012) 1256–1268.
[149]T. Attar, Y. Harek, N. Dennouni-Medjati, L. Larabi, Determination of optimal conditions for the dosage of selenium in whole human blood by differential pulse cathodic stripping voltammetry. Der Pharma Chemica., 3 (2011) 400-405.
[150] N. Dennouni-Medjati, Y. Harek, T. Attar, L. Larabi, Whole Blood Selenium Levels in Healthy Adults from the West of Algeria. Biol. Trace. Elem. Res., 147 (2012) 44-48.
[151]F. Xueyang, W. Xianlin, L. Chang'e, et al, Targeting selenium nanoparticles combined with baicalin to treat HBV-infected liver cancer. RSC Adv., 7 (2017) 8178-8185.
[152]F. P. Bellinger, A. V. Raman, M. A. Reeves, M. J. Berry, Regulation and function of selenoproteins in human disease. Biochem. J., 422 (2009) 11-22.
[153]A. Lescure, M. Deniziak, M. Rederstroff, A. Krol, Molecular basis for the role of selenium in muscle development and function. Chem Biodivers., 2008, 5, 408-413
[154] L. Schomburg, Selenium, selenoproteins and the thyroid gland: interactions in health and disease. Nat. Rev. Endocrinol., 8 (2011) 160-171.
[155]E. Schoenmakers, M. Agostini, C. Mitchell, et al, Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J. Clin. Invest., 120 (2010) 4220-4235.
[156]H. C. Anyabolu, E. A Adejuyigbe, O. O. Adeodu, Serum Micronutrient Status of Haart-Naive, HIV Infected Children in South Western Nigeria: A Case Controlled Study. AIDS. Res. Treat., 2014 (2014) 1-8.
[157]R. Shivakoti, P. Christian, W. T. Yang, et al, Prevalence and risk factors of micronutrient deficiencies pre- and post-antiretroviral therapy (ART) among a diverse multicountry cohort of HIV-infected adults. Clin. Nutr., 35 (2016) 183-189.
[158]B. Speckmann, H. Steinbrenner, Selenium and selenoproteins in inflammatory bowel diseases and experimental colitis. Inflamm. Bowel. Dis., 20(2014)1110-1119.
[159]L. Schomburg, U. Schweizer, B. Holtmann, et al, Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J., 370 (2003) 397-402.
[160]C. W. Barrett, V. K. Reddy, S. P. Short, et al, Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J. Clin. Investig., 125 (2015) 2646–2660.
[161]M. Hamid, Y. Abdulrahim, D. Liu, G. Qian, A. Khan, A, The Hepatoprotective Effect of Selenium-Enriched Yeast and Gum Arabic Combination on Carbon Tetrachloride-Induced Chronic Liver Injury in Rats. J. Food Sci., 83 (2018) 525–534.
[162]M. S. Khan, The possible role of selenium concentration in hepatitis B and C patients. Saudi J Gastroentero., 18(2012): 106-110.
[163]X. Gao, Z. Zhang, Y. Li, et al, Selenium Deficiency Facilitates Inflammation Following S. aureus Infection by Regulating TLR2-Related Pathways in the Mouse Mammary Gland. Biol. Trace Elem. Res., 172 (2016) 449–457.
[164]C.W. Barrett, S. P. Short, C. S. Williams, Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell. Mol. Life Sci., 74 (2017) 607–616.
[165]S. K. Nettleford, K. S. Prabhu, Selenium and Selenoproteins in Gut Inflammation-A Review. Antioxidants (Basel)., 7 (2018) 1-12.
[166]Z. Zhang, X. Gao, Y. Cao, et al, Selenium Deficiency Facilitates Inflammation Through the Regulation of TLR4 and TLR4-Related Signaling Pathways in the Mice Uterus. Inflammation., 38 (2015) 1347–1356.
[167]Y. Zhang, Y. Zhou, U. Schweizer, et al, Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J. Biol. Chem., 283 (2008) 2427-2438.
[168]C. S. Broome, F. McArdle, J. A. Kyle, et al, An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr., 80 (2004) 154-162
[169]J.C. Avery, P. R. Hoffmann, Selenium, Selenoproteins, and Immunity. Nutrients., 10 (2018) 1-20.
[170]R. C. Wilfred, 2012. Nickel : The trace mineral that aids in iron absorption, as well as adrenaline and glucose metabolism.
[171]L. Samal, C. Mishra, Significance of Nickel in Livestock Health and Production. IJAVMS., 5 (2011) 349-361.
[172] S. Mudjari, M. H. Achmad, Comparison Between Nickel and Chromium Levels in Serum and Urine in Patients Treated with Fixed Orthodontic Appliances: A Longitudinal Study. Pesq. Bras. Odontoped. Clin. Integr., 18 (2018) 1-8.
[173] A. Duda-Chodak, U. Baszczyk, The impact of nickel on human health. J. Elementol., 13 (2008) 685-696.
[174]A. Sharma, Relationship between nickel allergy and diet. Indian. J. Dermatol. Ve., 73 (2007) 307–312.
[175]G. C. Compeau, R. Bartha, Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment. Appl. Environ. Microbiol., 50 (1985) 498-502.
[176]A. R. Oller, M. Costa, G. Oberdörster, Carcinogenicity assessment of selected nickel compounds. Toxicol. Appl. Pharmacol., 143 (1997) 152-166.
[177]S. K. Seilkop, A. R. Oller, Respiratory cancer risks associated with low-level nickel exposure: an integrated assessment based on animal, epidemiological, and mechanistic data. Regul. Toxicol. Pharmacol., 37 (2003) 173-190
[178]D. B. Mcgregor, R. A. Baan, C. Partensky, J. M. Rice, J. D. Wilbourn, Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies – a report of an IARC Monographs Programme Meeting. Eur. J. Cancer., 36 (2000) 307-313.
[179]J. Zhao, X. Shi, V. Castranova, M. Ding, Occupational toxicology of nickel and nickel compounds. J. Environ. Pathol. Toxicol. Oncol., 28(2009) 177-208.
[180]S. Kumar, A.V. Trivedi, A Review on Role of Nickel in the Biological System. Int. J .Curr. Microbiol. App. Sci., 5 (2016) 719-727.
[181]S. Chan, B. Gerson, S. Subramaniam, The role of copper, molybdenum, selenium, and zinc in nutrition and health.
Clin. Lab. Med., 18 (1998) 673-685.
[182] J. Higdon, (2003). In “An Evidence-Based Approach to Vitamins and Minerals.” pp. 163–165. Thieme, New York.
[183] J. R. Turnlund, L. T. Friberg, (2007). Molybdenum. Handbook on the Toxicology of Metals, pp. 731–741.
[184] J. A. Novotny, C. A. Peterson, Molybdenum. Adv. Nutr., 9 (2018) 272-273.
[185] A. Agarwal, A. Banerjee, U. C. Banerjee, Xanthine oxidoreductase: a journey from purine metabolism to cardiovascular excitation-contraction coupling. Crit. Rev. Biotechnol., 31 (2011) 264-280.
[186] G. Schwarz, A. A. Belaidi (2013) Molybdenum in Human
Health and Disease. In: Sigel A., Sigel H., Sigel R. (eds) Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences, vol 13. Springer, Dordrecht
[187] M. K. Anke, Molybdenum. In: Merian E, Anke M, Ihnat M, Stoeppler M, editors. Elements and Their Compounds in the Environment. Weinheim: Wiley-VCH Verlag; 2004. pp. 1007–1037.
[188] K. Ichida, Y. Amaya, K. Okamoto, T. Nishino, Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int. J. Mol. Sci., 13 (2012) 15475-15495.
[189] J. A. Novotny, J. R. Turnlund, Molybdenum intake influences molybdenum kinetics in men. J. Nutr., 137 (2007) 37-42.
[190] A. Vyskocil, C. Viau, Assessment of molybdenum toxicity in humans. J. Appl. Toxicol., 19 (1999) 185-192.
[191] J. A. Novotny, J. R. Turnlund, Molybdenum kinetics in men differ during molybdenum depletion and repletion. J. Nutr., 136 (2006) 953-957.
[192] M. S. Seelig, Review: relationships of copper and molybdenum to iron metabolism. Am. J. Clin. Nutr., 25 (1972) 1022-1037.
[193]W. Mertz, (1993) Chromium in human nutrition: A review. Journal of Nutrition., 123 (1993) 626-633.
[194]R. A. Anderson, Chromium as an essential nutrient for humans. Regul. Toxicol. Pharmacol., 26 (1997) S35–41.
[195]R. A. Anderson, Nutritional factors influencing the glucose/insulin system: Chromium. J .Am. Coll. Nutr.,16 (1997) 404-410.
[196]T. C. William, B. H. Frank, Role of chromium in human health and in diabetes. Diabetes Care., 27 (2004) 2741-2751.
[197]W. Sealls, B. A. Penque, J. S. Elmendorf. Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia – brief report. Arterioscler. Thromb. Vasc. Biol., 31 (2011) 1139-1140.
[198]Y. Ando, [Analyses of pathogenesis and therapeutic approaches for hereditary amyloidosis]. Rinsho. Byori., 51 (2003) 530-535.
[199]M. Tuzcu, N. Sahin, C. Orhan, et al, Impact of chromium histidinate on high fat diet induced obesity in rats. Nutr. Metab. (Lond)., 8 (2011) 1-8.
[200]H. J. Gibb, P. S. Lees, P. F. Pinsky, B. C. Rooney, Lung cancer among workers in chromium chemical production. Am. J. Ind. Med., 38 (2000) 115-126.
[201]J. R. Davidson, K. Abraham, K. M. Connor, M. N. McLeod, Effectiveness of chromium in atypical depression: a placebo-controlled trial. Biol. Psychiatry., 53 (2003) 261-264.
[202]A. Piotrowska, K. Młyniec, A. Siwek, et al, Antidepressant-like effect of chromium chloride in the mouse forced swim test: involvement of glutamatergic and serotonergic receptors. Pharmacol. Rep., 60 (2008) 991-995.
[203] G. Flora, D. Gupta, A. Tiwari, Toxicity of lead a review with recent updates. Interdiscip. Toxicol., 5 (2012) 47-58.
[204] H. Lennart, J. Lars, P. Bodil, A. Olav, Using environmental concentrations of cadmium and lead to assess human exposure and dose. J. Expo. Sci. Env. Epid., 14 (2004) 416-423
[205] G. Winneke, U. Kramer, Neurobebavioural aspects of lead neurotoxicity in children. Cent. Eur. J. Public. Health., 5 (1997) 65-9.
[206] T. Attar, Y. Harek, L. Larabi, Dosage du cadmium et du plombdans le sang humain par voltamétrie à redissolutionanodique. Ann BiolClin., 70 (2012) 595-598.
[207] M. Aliasgharpour, M. Abbassi, The absence of hematological outcome in workers occupationally exposed to lead in Tehran-
Iran. Haema., 9 (2006) 398–400.
[208] A. Mehri, Trace Elements in Human Nutrition (II) - An Update. Int. J. Prev. Med., 11 (2020) 1-17.
[209] L. Patrick, Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern. Med. Rev., 11 (2006) 2–22.
[210] R. R. Raphael, D. S. Strayer, Rubin's pathology: Clinicopathologic foundations of medicine. 5th ed. Pennsylvania, USA: Lippincott Williams and Wilkins (LWW); 2008.
[211] G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 5 (2012) 47–58.
[212] U.S. Food and Drug Administration, (2015) Q3D Elemental Impurities Guidance for Industry (Report), USA: U. S. Department of Health and Human Services, p41.
[113] S. Fariborz, B. Abasalt, Lead exposure and neurodegenerative diseases. Der. Pharmacia. Lettre., 8(2016)14-18.
[214] T. Attar, Determination of serum cadmium and lead in healthy adults from the west of Algeria. SPC Journal of Environmental Sciences., 1 (2019) 12-15.
[215] T. I. Lidsky, J. S. Schneider, Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain., 126(2003)5-19
[216] A. Garza, R. Vega, E. Soto, Cellular mechanisms of lead neurotoxicity. J. Exp. Clin. Res., 12 (2006) 57-65
[217]S. Satarug, W. Swaddiwudhipong, W. Ruangyuttikarn, M. Nishijo, P. Ruiz, Modeling cadmium exposures in low-and high-exposure areas in Thailand. Environ. Health. Perspect., 121 (2013) 431–462.
[218]Järup, L., Berglund, M., Elinder, C. G., Nordberg, G. & Vahter, M. Health effects of cadmium exposure-a review of the literature and a risk estimate. Scand. J. Work. Env. Hea., 24 (1998) 1–51.
[219]E. Casalino, C. Sblano,C. Landriscina, Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Arch. Biochem. Biophys., 346 (1997) 171–179.
[220]S. Djurasevic, Z. Todorovic, S. Pavlovic, S. Pejic, (2019) Cadmium and Fullerenes in Liver Diseases. Dietary Interventions in Liver Disease Foods, Nutrients, and Dietary Supplements, pp. 333-344.
[221]R. L. Hough, Assessing potential risk of heavy metal exposure from consumption of home-produced vegetables by urban populations. Environ. Health. Perspect., 112 (2004) 215–221.
[222]C. S. Qu, Z. W. Ma, J. Yang, et al, Human exposure pathways of heavy metals in a lead-zinc mining area, Jiangsu Province, China. PloS one., 7 (2012) 1-11.
[223]J. Holdaway, W. Wuyi, From Soil Pollution to “Cadmium Rice” to Public Health Impacts: An Interdisciplinary Analysis of Influencing Factors and Possible Responses. J. Resour. Ecol., 9 (2018) 10-21.
[224]F. Pinot, S. E. Kreps, M. Bachelet, et al, Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Rev. Environ. Health., 15 (2000) 299–323.
[225]G. Bertin, D. Averbeck, Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie., 88 (2006) 1549–1559.
[226]S. R. Orth, S. I. Hallan, Smoking: a risk factor for progression of chronic kidney disease and for cardiovascular morbidity and mortality in renal patients--absence of evidence or evidence of absence? Expert Rev. Cardiovasc. Ther., 10 (2012) 1213–1216.
[227]J.N. Kermani, M. F. Ghasemi, A. Khosravan et al,
Bioremediation of cadmium by Bacillus safensis (JX126862), a marine bacterium isolated from mangrove sediments. J. Environ. Health. Sci. Eng., 7 (2010) 279-286.
[228]S. Saygi, G. Deniz, O. Kutsal, N. Vural, Chronic effects of cadmium on kidney, liver, testis, and fertility of male rats. Biol. Trace. Elem. Res., 31 (1991) 209–214.
[229]R. A. Goyer, Mechanisms of lead and cadmium nephrotoxicity. Toxicol. Lett., 46 (1989) 153–162.
[230]C. C. Bridges, R. K. Zalups, Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol., 204 (2005) 274–308.
[231]C. Ledda, C. Loreto, C. Zammit, et al, Noninfective occupational risk factors for hepatocellular carcinoma: a review (review). Mol. Med. Rep., 15 (2017) 511–533.
[232]A. Salinska, T. Wlostowski, E. Olenska, Differential susceptibility to cadmium-induced liver and kidney injury in wild and laboratory-bred bank voles Myodes glareolus. Arch. Environ. Contam. Toxicol., 65 (2013) 324–331.
[233]M. M. Brzóska, J. Moniuszko-Jakoniuk, Interactions between cadmium and zinc in the organism. Food. Chem. Toxicol., 39 (2001) 967-980.
[234]E. Freisinger, M. Vašák, Cadmium in metallothioneins. Met. Ions. Life. Sci., 11 (2013) 339-371.
[235]C. D. Klaassen, J. Liu, B. A. Diwan, Metallothionein protection of cadmium toxicity. Toxicol. Appl. Pharm., 238 (2009) 215–220.
[236] A. Duncan, A. Taylor, E. Leese, et al, Homicidal arsenic poisoning. Ann. Clin. Bioch., 52 (2015) 510–515.
[237] R. Quansah, F. A. Armah, D. K. Essumang, et al, Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ. Health. Perspect., 123 (2015) 412-421
[238] M. Tolins, M. Ruchirawat, P. Landrigan, The developmental neurotoxicity of arsenic: Cognitive and behavioral consequences of early life exposure. Ann. Glob. Health., 80 (2014) 303–314.
[239] L. Y. Zhou, FY. Chen, L. J. Shen, H. X. Wan, J. H. Zhong, Arsenic trioxide induces apoptosis in the THP1 cell line by down regulating EVI-1. Exp. Ther. Med., 8 (2014) 85-90.
[240] X .P. Sun, X. Zhang, C. He, et al. ABT-737 synergizes with arsenic trioxide to induce apoptosis of gastric carcinoma cells in vitro and in vivo. J. Int. Med. Res., 40(2012)1251-1264.
[241] S. H. Ghaffari, M. Yousefi, M. Z. Dizaji, et al, Arsenic trioxide induces apoptosis and incapacitates proliferation and invasive properties of U87MG glioblastoma cells through a Possible NF-κB-mediated mechanism. Asian. Pac. J. Cancer. Prev., 17(2016)1553-1564.
[242] Y. Wang, L. Wang, C. Yin, et al, Arsenic trioxide inhibits breast cancer cell growth via microRNA-328/hERG pathway in MCF-7 cells. Mol. Med. Rep., 12(2015)1233-1280.
[243] H. T. Hu, QJ. Yao, Y. L. Meng, et al, Arsenic trioxide intravenous infusion combined with transcatheter arterial chemoembolization for the treatment of hepatocellular carcinoma with pulmonary metastasis: Long-term outcome analysis. J. Gastroenterol. Hepatol., 32(2016)295–300.
[244] A. M. Walker, J. J. Stevens, K. Ndebele, P. B. Tchounwou, Evaluation of arsenic trioxide potential for lung cancer treatment: Assessment of apoptotic mechanisms and oxidative damage. J. Cancer. Sci. Ther., 8(2016)1-9.
[245] K. Sundseth, J. M. Pacyna, E. G. Pacyna, et al, Economic benefits from decreased mercury emissions: Projections for 2020. J. Clean. Prod., 18(2010)386-394.
[246] J. Liu, R.A. Goyer, M.P. Waalkes, Toxic effects of metals. In: Casarett LJ, Doull J, Klaassen CD, editors. Casarett and Doull's toxicology: the basic science of poisons. 7th ed. New York: McGraw-Hill; 2008. pp. 931-979.
[247] S. Ekino, M. Susa, T. Ninomiya, K. Kitamura, T. Imamura, Minamata disease revisited: an update on the acute and chronic manifestations of methyl mercury poisoning. J. Neurol. Sci., 262(2007)131-44.
[248] J.D. Park, W. Zheng, Human Exposure and Health Effects of Inorganic and Elemental Mercury. J. Prev. Med. Public. Health., 45 (2012) 344-352
[249] T.W. Clarkson, L. Magos, The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol., 36(2006)609-662.
[250] P. Moszczyński, Immunological disorders in men exposed to metallic mercury vapour. A review. Cent. Eur. J. Public. Health., 7 (1999) 10-14.
[251] A. Kingman, T. Albertini, L.J. Brown, Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J. Dent. Res., 77 (1998) 461-471.