Nan@Tetracyanoethylene (n=1-4) systems: Sodium salt vs Sodium electride

Document Type : Research Article


1 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Department of Chemistry, Payame Noor University, Tehran, Iran

3 Instituto de Química Médica (CSIC), Juan de la Cierva, 3, Madrid 28006, Spain


Electrides are interesting and promising materials with cavity-trapped electrons which can be used as source of electron donor in different systems. Hereby, we have explored the possible formation of electride materials based on tetracyanoethylene (TCNE) backbone at MP2 computational level. This is achieved by systematic addition of up to four Na atoms to TCNE backbone. Our results predict high thermodynamic stability in the Nan@TCNE (n=1-4) systems. Moreover, based on the evaluation of four criteria, non-nuclear attractor (NNA), electron localization function (ELF), electron density laplacian (∇^2 ρ(r)), and non-linear optical (NLO), TCNE-Na1 and TCNE-Na2 and TCNE-Na4 species are conventional donor-acceptor systems (lithium salt). In contrast, the TCNE-Na3 species can be introduced as sodium electride with cavity-trapped electrons. Therefore, Na:TCNE ratio is very significant factor to provide species with electride feature through the addition of Na atoms to TCNE backbone.


[1]     E. Zurek, P.P. Edwards, R. Hoffmann, A molecular perspective on lithium–ammonia solutions, Angew. Chem. Int. Ed 48 (2009) 8198–8232.
[2]     J.L. Dye, Electrons as Anions, Science, 301 (2003) 607–608.
[3]     J.L. Dye, Metal-Ammonia Solutions, Colloque Weyl II, Ithaca, New York, 1969; Butterworths, London, 1970, p. 1–17.
[4]     J.L. Dye, M.G. DeBacker, L.M. Dorfman, Pulse Radiolysis Studies. XVIII. Spectrum of the Solvated Electron in the Systems Ethylenediamine–Water and Ammonia–Water, J. Chem. Phys. 52 (1970) 6251–6258.
[5]     J.L.Dye, Electrides: Ionic Salts with Electrons as the Anions, Science, 247 (1990) 663-668.
[6]     T.A. Kaplan, J.F. Harrison, J.L. Dye, R. Rencsok, Relation of Li(NH3)4 to Electrides, Phys. Rev. Lett. 75 (1995) 978-978.
[7]     J.L. Dye, Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals, Inorg. Chem. 36 (1997) 3816–3826.
[8]     J.L. Dye, Electrides and alkalides-comparison with metal solutions J. Phys. IV 1 (1991) 259–282.
[9]     H. Hosono, Two classes of superconductors discovered in our material research: iron-based high temperature superconductor and electride superconductor, Physica C 469 (2009) 314–325.
[10] S. Watanabe, T. Watanabe, K. Ito, N. Miyakawa, S. Ito, H. Hosono, S. Mikoshiba, Secondary electron emission and glow discharge properties of 12CaO-7Al2O3 electride for fluorescent lamp applications, Sci. Technol. Adv. Mat. 12 (2011) 034410-034417.
[11] H. Yanagi, K.-B. Kim, I. Koizumi, M. Kikuchi, H. Hiramatsu, M. Miyakawa, T. Kamiya, M. Hirano, H. Hosono, Low Threshold Voltage and Carrier Injection Properties of Inverted Organic Light-Emitting Diodes with [Ca24Al28O64]4+(4e) Cathode and Cu2−xSe Anode, J. Phys. Chem. C 113 (2009) 18379-18384.
[12] Y. Toda, H. Hirayama, N. Kuganathan, A. Torrisi, P. V. Sushko, H. Hosono, Activation and splitting of carbon dioxide on the surface of an inorganic electride material, Nat. Commun. 4 (2013) 2378-2385.
[13] M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, and H. Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem 4 (2012) 934-940.
[14] M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat. Commum. 6 (2015) 6731-6739.
[15] Y. Lu, J. Li, T. Tada, Y. Toda, S. Ueda, T. Yokoyama, M. Kitano, H. Hosono, Water Durable Electride Y5Si3: Electronic Structure and Catalytic Activity for Ammonia Synthesis. J. Am. Chem. Soc. 138 (2016) 3970-3973.
[16] M. Kitano, Y. Inoue, Y. Yamazaki, F. Hayashi, S. Kanbara, S. Matsuishi, T. Yokoyama, S.-W. Kim, M. Hara, H. Hosono, Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store, Nat. Chem. 4 (2012) 934–940.
[17] H. Buchammagari, Y. Toda, M. Hirano, H. Hosono, D. Takeuchi, K. Osakada, Room Temperature-Stable Electride as a Synthetic Organic Reagent:  Application to Pinacol Coupling Reaction in Aqueous Media Org. Lett. 9 (2007) 4287-4289.
[18] S. Choi, Y. J. Kim, S.M. Kim, J.W. Yang, S.W. Kim, E.J. Cho, Hydrotrifluoromethylation and iodotrifluoromethylation of alkenes and alkynes using an inorganic electride as a radical generator, Nat. Commun. 5 (2014) 1038-1046.
[19] Y.J. Kim, S.M. Kim, H. Hosono, J.W. Yang, S.W. Kim, The scalable pinacol coupling reaction utilizing the inorganic electride [Ca2N]+·e as an electron donor, Chem. Comm. 50 (2014) 4791-4794.
[20] J.L. Dye, Anionic electrons in electrides, Nature. 365 (1993) 10–11.
[21] D.J. Singh, H. Krakauer, C. Haas, W.E. Pickett, Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e-,Nature. 365 (1993) 39–42.
[22] J.L. Dye, Electrides: from 1D Heisenberg chains to 2D pseudo-metals, Inorg. Chem. 36 (1997) 3816–3826.
[23] M.-S. Miao, R. Hoffmann, High Pressure Electrides: A Predictive Chemical and Physical Theory, Acc. Chem. Res. 47 (2014) 1311–1317.
[24] S.G. Dale, A. Otero-de-la Roza, E.R. Johnson, Density-functional descriptio of electrides, Phys. Chem. Chem. Phys. 16 (2014) 14584–14593.
[25] M. Garcia-Borra`s, M. Sola`, J.M. Luis, B. Kirtman, Electronic and vibrational nonlinear optical properties of five representative electrides, J. Chem. Theory Comput. 8 (2012) 2688–2697.
[26] W. Chen, Z.-R. Li, D. Wu, Y. Li, C.-C. Sun, F.L. Gu, The Structure and the Large Nonlinear Optical Properties of Li@Calix[4]pyrrole, J. Am. Chem. Soc. 127 (2005) 10977–10981.
[27] Y.-F. Wang, Z.-R. Li, D. Wu, C.-C. Sun, F.-L. Gu, Excess electron is trapped in a large single molecular cage C60F60, J. Comput. Chem. 31 (2010) 195–203.
[28] K. Lee, S.W. Kim, Y. Toda, S. Matsuishi, H. Hosono, Dicalcium nitride as a two-dimensional electride with an anionic electron layer, Nature. 494 (2013) 336–340.
[29] S.G. Dale, A. Otero-de-la Roza, E.R. Johnson, Density-functional description of electrides
Phys. Chem. Chem. Phys. 16 (2014) 14584–14593.
[30] A.D. Becke, K.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems J. Chem. Phys. 92 (1990) 5397-5403.
[31] M. Marque´s, G.J. Ackland, L.F. Lundegaard, G. Stinton, R.J. Nelmes, M.I. McMahon, otassium under Pressure: A Pseudobinary Ionic Compound, J. Contreras-Garcı´a, Phys. Rev. Lett. 103 (2009) 115501-1155014.
[32] V. Postils, M. Garcia-Borra`s, M. Sola`, J.M. Luis, E. Matito, On the existence and characterization of molecular electrides, Chem. Commun. 51 (2015) 4865-4868.
[33] O.E. Bakouri , V. Postils , M. Garcia-Borràs, M. Duran, J.M. Luis, S. Calvello, A. Soncini, E. Matito, F. Feixas, M. Solà, Metal Cluster Electrides: a new Type of Molecular Electrides with Delocalised Polyattractor Character, Chem. Eur. J. 24 (2018) 9853-9859.
[34] R.A. Kendall, T.H. Dunning, R.J. Harrison, Electron affinities of the first‐row atoms revisited Systematic basis sets and wave functions. J. Chem. Phys 96 (1992) 6796-6806.
[35] P.P. Edwards, P.A. Anderson, J.M. Thomas, Dissolved Alkali Metals in Zeolites, Acc. Chem. Res. 29 (1996) 23-29.
[36] M.J. Frisch, et al. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, 2009.
[37] T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-590.
[38] R.F.W. Bader In: Halpen J, Green MLH (Eds) The international series of monographs of chemistry, Clarendon Press, Oxford (1990).
[39] I.K. Petrushenko, DFT Study on adiabatic and vertical ionization potentials of graphene sheets, Advances in Materials Science and Engineering, 2015 (2015) 1-7. DOI:10.1155/2015/262513.
[40] S.G. Dale, E.R. Johnson, Theoretical descriptors of electrides, J. Phys. Chem. A, 122 (2018) 9371–9391.
Y. Chen, S. Manzhos, A computational study of lithium interaction with tetracyanoethylene (TCNE) and tetracyaniquinodimethane (TCNQ) molecules, Phys. Chem. Chem. Phys. 18 (2016) 1470-1477