An overview on the carbon capture technologies with an approach of green coal production study

Document Type : Review Article

Authors

1 Department of Energy, Amirkabir university of technology, Tehran, Iran

2 Energy Department, Amirkabir university of technology, Tehran, Iran

3 Energy faculty, Amirkabir university of technology, Tehran, Iran

Abstract

Coal will still be a significant component of power generation for years to come, and carbon dioxide capture systems will be the essential feature of clean coal in the future. Those who promise to deliver low carbon dioxide capture costs are committed to the pipeline and future systems. So far, many methods of carbon dioxide capture have proved costly and energy-hungry based on coal system additives. Besides, it is continually moving other industries to effectively utilize the amount of carbon present in carbon dioxide and move toward carbon capture and reuse, which is marketed ready for carbon dioxide, but it has different requirements on product quality. This paper aims to review the methods of carbon capture technologies and develop an optimal method for the green coal combustion process using the Energy and Exergy Analysis. According to the results of this paper, the Chemical Looping Combustion is the most suitable method for this process, and with the coal, powerplants using CLC technologies, the Green Coal target can be made real.

Keywords


[1] J. Adánez, A. Abad, T. Mendiara, P. Gayán, L.F. de Diego, F. García-Labiano, Chemical looping combustion of solid fuels. Prog. Energ. Combust. Sci., 65 (2018) 60-66.
[2] Juan Adanez, Alberto Abad, Francisco Garcia-Labiano, Pilar
Gayan, Luis F. de Diego, Progress in Chemical-Looping Combustion and Reforming technologies. Prog. Energ. Combust. Sci., 38 (2012) 215-282,
[3] Erdogan Alper, Ozge Yuksel Orhan, CO2 utilization: Developments in conversion processes. Petrol., 3 (2017) 109-126.
[4] J. Anderson, D. Drury, J. Hamlin, and A. Kent. 1989. Process for the Preparation of Formic Acid, United States Patent Number 4855496.
[5] C2ES. 2016. Global Emissions: Center for Climate and Energy Solutions. 1–12. Accessed December 24, 2018.
[6] R. Chauvy, N. Meunier, D. Thomas, G. D. Weireld, Selecting emerging CO2 utilization products for short- to mid-term deployment. Appl. Energ., 236 (2019) 662-680.
[7] A. Cormos, C. Cormos, Investigation of hydrogen and power co-generation based on direct coal chemical looping systems. Int. J. Hydr. Energ., 39 (2014) 2067-2077.
[8] C. Cormos, Hydrogen production from fossil fuels with carbon capture and storage based on chemical looping systems. Int. J. Hydr. Energ., 36 (2011) 5960-5971.
[9] Y. Demirel, M. Matzen, C. Winters, X. Gao, Capturing and using CO2 as feedstock with chemical looping and hydrothermal technologies. Int. J. Energ. Res., 39 (2015) 1011–1047.
[10] DNV. 2011. Carbon Dioxide Utilisation: Electrochemical Conversion of CO2 - Opportunities and Challenges. Accessed January 23, 2019.
[11] Energy. 2017. BP Statistical Review of World Energy - June 2017. Accessed December 12, 2018.
[12] EPA-14. 2013. Global Emissions by Gas - Environmental Protection Agency. 1–8. Accessed December 24, 2018. http:// www.epa.gov/climatechange/ghgemissions/global.html.
[13] L. Fan, 2010. Chemical Looping Systems for Fossil Energy Conversion. American Institute of Chemical Engineers, John Wiley & Sons, Inc., Hoboken, New Jersey, USA.
[14] Formic Acid Marke. 2018. Formic Acid Market - Segmented by Grade Type, Application, and Geography - Growth, Trends and Forecasts (2019-2024). Accessed January 22, 2019.
[15] Formic Acid Market. 2019a. Formic Acid Market: Types (Grades of 85%, 94%, 99%, and Others) by Application (Agriculture, Leather & Textile, Rubber, Chemical & Pharmaceuticals, & Others) & Region – Forecast (2018-2023). Accessed January 23, 2019.
[16] Formic Acid Market. 2019b. Formic Acid Market Worth $618,808.7 Thousand by 2019. Accessed January 20, 2019.
[17] N. V. Gnanapragasam, B. V. Reddy, M. A. Rosen, Hydrogen production from coal using coal direct chemical looping and syngas chemical looping combustion systems: Assessment of system operation and resource requirements. Int. J. Hydr. Energ., 34 (2009) 2606-2615.
[18] P. D. Hanak, C. Biliyok, H. Yeung, R. Białecki, Heat integration and exergy analysis for a supercritical high-ash coal-fired power plant integrated with a post-combustion carbon capture process. Fuel., 134 (2014) 126-139.
[19] F. He, N. Galinsky, F. Li, Chemical looping gasification of solid fuels using bimetallic oxygen carrier particles – Feasibility assessment and process simulations. Int. J. Hydr. Energ., 38 (2013) 7839-7854.
[20] S. Hladiy, M. Starchevskyy, Y. Pazderskyy, and Y. Lastovyak 2004. Method for Production of Formic Acid, United States Patent Number 6713649 B1.
[21] IPCC. 2014. Climate Change 2014: Synthesis Report.
[22] S. Karmakar, A. Kolar, Thermodynamic analysis of high‐ash coal‐fired power plant with carbon dioxide capture. Int. J.
Energ. Res., 37 (2013) 522-534.
[23] S. Karmakar, M. V. J. J. Suresh, A. K. Kolar, The Effect of Advanced Steam Parameter-Based Coal-Fired Power Plants With Co2 Capture on the Indian Energy Scenario, Int. J. Green. Energ., 10 (2013) 1011-1025.
[24] E. I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: Review of CO2 capture and reuse technologies. J. Supercrit. Fluids., 132 (2018) 3-16.
[25] B. Li, Y. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology: A patent review, Appl. Energ., 102 (2013) 1439-1447.
[26] M. Luo, Y. Yi, S. Wang, Z. Wang, M. Du, J. Pan, Q. Wang, Review of hydrogen production using chemical-looping technology. Renew. Sustain. Energ. Rev., 81 (2018) 3186-3214.
[27] S. Luo, S. Bayham, L. Zeng, O. McGiveron, E. Chung, A. Majumder, L. Fan, Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor. Appl. Energ., 118 (2014) 300-308.
[28] Mantra. 2015. Mantra Releases Update on Demonstration Projects. February 2015. Online News. Accessed January 23, 2019.
[29] M. Matzen, M. Alhajji, Y. Demirel, Chemical storage of wind energy by renewable methanol production: Feasibility analysis using a multi-criteria decision matrix. Energ., 93 (2015) 343-353.
[30] M. Matzen, J. Pinkerton, X. Wang, Y. Demirel, Use of natural ores as oxygen carriers in chemical looping combustion: A review. Int. J. Greenh. Gas. Control., 65 (2017) 1-14.
[31] B. Moghtaderi, Review of the Recent Chemical Looping Process Developments for Novel Energy and Fuel Applications. Energ. Fuels., 26 (2012) 15-40.
[32] S. Mukherjee, P. Kumar, A. Yang, P. Fennell, A systematic investigation of the performance of copper-, cobalt-, iron-, manganese- and nickel-based oxygen carriers for chemical looping combustion technology through simulation models. Chem. Eng. Sci., 130 (2015) 79-91.
[33] H. Ozcan, I. Dincer, Thermodynamic analysis of a combined chemical looping-based trigeneration system. Energ Convers. Manage., 85 (2014) 477-487.
[34] M. Pérez-Fortes, J. C. Schöneberger, A. Boulamanti, G. Harrison, E. Tzimas, Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. Int. J. Hydr. Energ., 41 (2016) 16444-16462.
[35] B. Pillai, G. D. Surywanshi, V. S. Patnaikuni, S. B. Anne, R. Vooradi, Performance analysis of a double calcium looping‐integrated biomass‐fired power plant: Exploring a carbon reduction opportunity. Int. J. Energ. Res., 43 (2019) 5301– 5318.
[36] T. Schaub, D. Fries, R. Paciello, K. Mohl. (2014) Process for Preparing Formic Acid by Reaction of Carbon Dioxide with Hydrogen, United States Patent Number 8791297 B2.
[37] V. Spallina, M. C. Romano, P. Chiesa, F. Gallucci, M. V. S. Annaland, G. Lozza. Integration of Coal Gasification and Packed Bed CLC for High Efficiency and Near-Zero Emission Power Generation. Energ. Proced., 27 (2014) 662–670.
[38] M. V. Suresh, K. S. Reddy, A. K. Kolar. 3-E Analysis of Advanced Power Plants Based on High Ash Coal. Int. J. Energ. Res., 34 (2010) 716–735.
[39] K. Wang, X. Tian, H. Zhao, Sulfur behavior in chemical-
[40] looping combustion using a copper ore oxygen carrier. Appl. Energ., 166 (2016) 84-95.
[41] X. Wang, Y. Demirel, Feasibility of Power and Methanol
Production by an Entrained-Flow Coal Gasification. Sys. Energ. Fuels., 32 (2018) 7595-7610.
[42] J. Yan, Z. Zhang, Carbon Capture, Utilization and Storage
(CCUS). Appl. Energ., 235 (2019) 1289-1299.
[43] L. Zeng, F. He, F. Li, L. Fan, Coal-Direct Chemical Looping Gasification for Hydrogen Production: Reactor Modeling and Process Simulation. Energ. Fuels., 26 (2012) 3680-3690.
[44] G. D. Surywanshi, B. B. K. Pillai, V. S. Patnaikuni, R. Vooradi, S. B. Anne, Formic acid synthesis – a case study of CO2 utilization from coal direct chemical looping combustion power plant, Energ. Source. Part. A., 2019 (2019) 1-16.
[45] T. Mattison, Materials for Chemical-Looping with Oxygen Uncoupling, ISRN Chem. Eng., 2013 (2013) 526375.
[46] C Winters, Y. Demeril, Chemical-looping technology and hydrothermal process for capturing and converting carbon dioxide, University of Nebraska (2015).
[47] F. Li, et al., Coal direct chemical looping retrofit for pulverised coal-fired power plants with in-situ CO2 capture, Ohio State University. March 2008.
[48] I Abdually, et al: ALSTOM’s chemical looping combustion prototype for CO2 capture from existing pulverised coal fired power plants, CO2 capture technology meeting, July 2012.
[49] M. Godec, V. Kuuskraa, T. Van Leeuwen, L. Stephen Melzer, N. Wildgust. CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recover. Energ. Proced., 4 (2011) 2162-2169.
[50] R. Saeedi, Effect of residual natural gas saturation on multiphase flow behaviour during CO2 geo-sequestration in depleted natural gas reservoirs. J. Petrol. Sci. Eng., 82–83 (2012) 17-26.
[51] A. Raza, R. Gholami, R. Rezaee, V. Rasouli, A. A. Bhatti, C. H. Bing Suitability of depleted gas reservoirs for geological CO2 storage: a simulation study. Greenh. Gas. Sci. Technol., 8 (2018) 876-897.
[52] M. Jalil, R. Masoudi, N. B. Darman, M. Othman, Study of the CO2 injection storage and sequestration in depleted M4 carbonate gas condensate reservoir Malaysia Study of the CO2 Injection Storage and Sequestration in Depleted M4 Carbonate Gas Condensate Reservoir Malaysia (2012) (Carbon Management Technology Conference)
[53] R. Masoudi, M. Jalil, D.J. Press, K.-H. Lee, C. Phuat Tan, L. Anis, N.B. Darman, M. Othman An integrated reservoir simulation-geomechanical study on feasibility of CO2 storage in M4 carbonate reservoir, Malaysia International Petroleum Technology Conference (2011) International Petroleum Technology Conference, 15-17 November, Bangkok, Thailand: International Petroleum Technology Conference.
[54] A. K. Gupta, S. L. Bryant Analytical Models to Select an Effective Saline Reservoir for CO2 Storage SPE Annual Technical Conference and Exhibition, 19-22 September, Florence, Italy, Society of Petroleum Engineers (2010), pp. 1-13
[55] C. W. Kuo, S. M. Benson Numerical and analytical study of effects of small scale heterogeneity on CO2/brine multiphase flow system in horizontal corefloods. Adv. Water Resour., 79 (2015) 1-17.
[56] M. Zeidouni, M. Pooladi-Darvish, D. Keithm Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers. Int. J. Greenh. Gas. Control., 3 (2009)
600-611.
[57] J. Oh, K.-Y. Kim, W.S. Han, T. Kim, J.-C. Kim, E. Park Experimental and numerical study on supercritical CO2/brine transport in a fractured rock: implications of mass transfer, capillary pressure and storage capacity. Adv. Water Resour., 62 (2013) 442-453.
[58] Y. Peysson, L. André, M. Azaroual, Well injectivity during CO2 storage operations in deep saline aquifers—Part 1: Experimental investigation of drying effects, salt precipitation and capillary forces. Int. J. Greenh. Gas. Control., 22 (2014) 291-300.
[59] C. Al-Menhali, P. Reynolds, B. Lai, N. Niu, J. Nicholls, S. Crawshaw, S. Krevor, Advanced reservoir characterization for CO2 storage IPTC 2014: International Petroleum Technology Conference (2014)
[60] M.A. Barrufet, A. Bacquet, G. Falcone, Analysis of the storage capacity for CO2 sequestration of a depleted gas condensate reservoir and a saline aquifer. J. Can. Petrol. Technol., 49 (2010) 23-31.
[61] N. Norouzi, S. Talebi, An Overview on the Green petroleum Production. Chem. Rev. Lett., 3 (2020) 38-52.
[62] Z. Ma, S. Zhang, R. Xiao, Redox performance of pyrite cinder in methane chemical looping combustion. Chem. Eng. J., 395 (2020) 125097.
[63] M. A. Adnan, I. Pradiptya, T. I. Haque, M. M. Hossain, Integrated diesel fueled chemical looping combustion for power generation and CO2 capture – Performance evaluation based on exergy analysis. Energ. Convers. Manage., 206 (2020) 112430.
[64] Robert F. Pachler, Stefan Penthor, Karl Mayer, Hermann Hofbauer, Investigation of the fate of nitrogen in chemical looping combustion of gaseous fuels using two different oxygen carriers, Energy, Volume 195, 2020, 116926.
[65] A. Natali Murri, F. Miccio, V. Medri, E. Landi, Geopolymer-composites with thermomechanical stability as oxygen carriers for fluidized bed chemical looping combustion with oxygen uncoupling. Chem. Eng. J., 393 (2020) 124756.
[66] C. Kuang, S. Wang, M. Luo, J. Cai, J. Zhao, Investigation of CuO-based oxygen carriers modified by three different ores in chemical looping combustion with solid fuels. Renew. Energ., 154 (2020) 937-948.
[67] D. Cui, Y. Qiu, Y. Lv, M. Li, S. Zhang, N. Tippayawong, D. Zeng, R. Xiao, A high-performance oxygen carrier with high oxygen transport capacity and redox stability for chemical looping combustion. Energ. Convers. Manage., 202 (2019) 112209.
[68] G. Deng, K. Li, G. Zhang, Z. Gu, X. Zhu, Y. Wei, H. Wang, Enhanced performance of red mud-based oxygen carriers by CuO for chemical looping combustion of methane. Appl. Energ., 253 (2019) 113534.
[69] A. Abad, P. Gayán, R. Pérez-Vega, F. García-Labiano, L.F. de Diego, T. Mendiara, M.T. Izquierdo, J. Adánez, Evaluation of different strategies to improve the efficiency of coal conversion in a 50 kWth Chemical Looping combustion unit. Fuel., 271 (2020) 117514.
[70] G. D. Surywanshi, B. B. K. Pillai, V. S. Patnaikuni, R. Vooradi, S. B. Anne, 4-E analyses of chemical looping combustion based subcritical, supercritical and ultra-supercritical coal-fired power plants. Energ. Convers. Manage., 200 (2019) 112050.
[71] A. T. Ubando, W. Chen, V. Ashokkumar, J. Chang, Kinetics and thermodynamics dataset of iron oxide reduction using torrefied microalgae for chemical looping combustion, Data. Brief., 29 (2020) 105261.
[72] R. Pérez-Vega, A. Abad, P. Gayán, F. García-Labiano, M. T. Izquierdo, L. F. de Diego, J. Adánez, Coal combustion via Chemical Looping assisted by Oxygen Uncoupling with a manganese‑iron mixed oxide doped with titanium. Fuel. Process. Technol., 197 (2020) 106184.
[73] X. Wang, X. Wang, Y. Shao, B. Jin, Coal-fueled separated gasification chemical looping combustion under auto-thermal condition in a two-stage reactor system. Chem. Eng
. J., 390 (2020) 124641.
[74] S. Hammache, N. Means, W. Burgess, B. Howard, M. Smith, Investigation of low-cost oxygen carriers for chemical looping combustion at high temperature. Fuel., 273 (2020) 117746.
[75] F. Güleç, W. Meredith, C. Sun, C. E. Snape, Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts. Chem. Eng. J., 389 (2020) 124492.
[76] L. Zhou, K. Deshpande, X. Zhang, R. K. Agarwal, Process simulation of Chemical Looping Combustion using ASPEN plus for a mixture of biomass and coal with various oxygen carriers. Energ., 195 (2020) 116955.
[77] Z. Zhang, Y. Wang, L. Zhu, J. Li, F. Wang, G. Yu, Performance of Fe2O3/Al2O3 oxygen carrier modified by CaCO3 and CaSO4 in chemical looping combustion. Appl. Therm. Eng., 160 (2019 ) 113813.
[78] A. Abad, A. Cabello, P. Gayán, F. García-Labiano, L.F. de Diego, T. Mendiara, J. Adánez, Kinetics of CaMn0.775Ti0.125Mg0.1O2.9-δ perovskite prepared at industrial scale and its implication on the performance of chemical looping combustion of methane. Chem. Eng. J., 394 (2020) 124863.
[79] B. Wang, H. Li, W. Wang, C. Luo, D. Mei, Chemical looping combustion of lignite with the CaSO4–CoO mixed oxygen carrier. J. Energ. Inst., 93 (2020) 1229-1241.