DFT study of azo linkage effect on homoaromatization of some 1,4-dihydropryridines

Document Type : Research Article

Authors

Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

1,4-dihydropryridine derivatives revealed various biological activities and pharmacological properties such as antiviral, antibacterial and anti-inflammatory activities. In this research, density functional theory (DFT) calculations at the B3LYP level are used to optimize the geometry of the compounds. In this study, we were interested in evaluation of homoaromaticity of the selected compounds using nucleus independent chemical shifts NICS(0), NICS(0.5), NICS(1), NICS(1.5) and NICS(2), bond lengths, bond angles and HOMO-LUMO gap.

Graphical Abstract

DFT study of azo linkage effect on homoaromatization of some 1,4-dihydropryridines

Keywords


[1] G. Swarnalatha, G. Prasanthi, N. Sirisha C. M. Chetty, 1,4-Dihydropyridines: A Multtifunctional Molecule- A Review Int. J. Chem. Tech. Res., 3 (2011) 75-89.
[2] D. J. Triggle, The 1,4-Dihydropyridine Nucleus: A Pharmacophoric Template Part 1. Actions at Ion Channels. Mini Rev. Med. Chem., 3 (2003) 215-223.
[3] D. J. Triggle, Calcium channel antagonists: clinical uses-past, present and future. Biochem. Pharmacol., 74 (2007) 1-9.
[4] S. Gullapalli, P. Ramarao, L-type Ca2+ channel modulation by dihydropyridines potentiates κ-opioid receptor agonist induced acute analgesia and inhibits development of tolerance in rats. Neuropharmacology, 42 (2002) 467-475.
[5] P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc., 118 (1996) 6317-6318.
[6] P. Lazzereti, J. W. Emsley, J. Feeney, L. H. Sutcliffe (Eds.), Progress in Nuclear Magnetic Resonance Spectroscopy, Elsevier, Amsterdam, 36 (2000) 1-88.
[7] P. V. R. Scheleyer, M. Manoharan, Z. X. Wang, B. Kiran, H. J. Jiao, R. Puchta, N. J. R. V. E. Hommes, Dissected Nucleus-Independent Chemical Shift Analysis of π-Aromaticity and Antiaromaticity. Org. Lett., 3 (2001) 2465-2468.
[8] C. Corminboeuf, T. Heine, G. Seifert, P. V. R. Schleyer, J. Weber, Induced magnetic fields in aromatic [n]-annulenes-interpretation of NICS tensor components. Phys. Chem. Chem. Phys., 6 (2004) 273-276.
[9] P. V. R. Schleyer, Introduction:  Aromaticity. Chem. Rev., 101 (2001) 1115-1118.
[10] A. T. Balaban, P. V. R. Schleyer, H. S. Rzepa, Chem. Rev., 105 (2005) 3436-3447. P. V. R. Schleyer, Introduction:  Delocalization-Pi and Sigma. Chem. Rev., 105 (2005) 3433-3435.
[11] H. G. Rauf, S. Majedi, E. A. Mahmood, M. Sofi, DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett., 2 (2019) 176-186.
[12] S. Majedi, H. G. Rauf, M. Boustanbakhsh, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem. Rev. Lett., 2 (2019) 140-150.
[13] P. V. R. Schleyer, Introduction:  Delocalization-Pi and Sigma. Chem. Rev., 105 (2005) 3433-3435.
[14] L. A. Paquette, the Realities of Extended Homoaromaticity. Angew. Chem. Int. Ed. Engl., 17 (1978) 106-117.
[15] C. P. R. Jennison, D. Mackay, K. N. Watson, N. J. Taylor, The question of homoaromaticity in 1,6-dihydro-1,2,4,5-tetrazines. J. Org. Chem., 51 (1986) 3043-3051.
[16] M. Nikpassand, L. Zare, M. Saberi, Ultrasound-assisted l-proline catalyzed synthesis of novel derivatives of azo-linked dihydropyridines. Monatsh. Chem., 143 (2012) 289-293.
[17] M. Nikpassand, L. Zare Fekri, P. N. Rahro, Catalyst-free grinding method: a new avenue for synthesis of 6-amino-3-methyl-4-aryl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile and DFT studies on the mechanistic pathway of this category of compounds. Res. Chem. Intermediates, 45 (2019) 1707-1719.
[18] M. Nikpassand, L. Zare Fekri, Synthesis of bis coumarinyl methanes using of potassium 2-oxoimidazolidine-1, 3-diide as a novel, efficient and reusable catalyst. Chem. Rev. Lett., 2 (2019) 7-12.
[19] M. Nikpassand, L. Zare Fekri, Synthesis, experimental and DFT studies on crystal structure, FT-IR, 1H, and 13C NMR spectra, and evaluation of aromaticity of three derivatives of xanthens. Russ. J. General Chem., 83 (2013) 2352-2360.
[20] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, K. O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox (2009) Gaussian 09, Revision A.1, Gaussian Inc., Wallingford.