An overview on the green petroleum production

Document Type : Review Article

Authors

1 Department of Energy, Amirkabir university of technology, Tehran, Iran

2 Assistant Professor, Department of Energy, Amirkabir university of technology, Tehran, Iran

Abstract

Given the greenhouse gas emissions and future biofuels control, it is encouraged to look for alternatives to raw materials and green granular processes in the crop to produce these biodegradable chemicals. In addition, bio-oil or disinfectant crop oil for the production of second-generation biofuels, bio-oil can be processed in various refining units and may also result in green diesel production, which is not only an opportunity but also an opportunity. It's a challenge for the oil industry. Green Oil or Diesel Green can be produced by renewable diesel processing with petroleum oil in the current hydroprocessing unit. Hoping to discover the mechanism and optimization of processing technology by adding quantities of oils and animal fats to the traditional oil refining process, much research and work has been done on the processing process and simultaneous processing processes. Green Oil This is a literature review of green oil production using hydroprocessing and concurrent processing.

Graphical Abstract

An overview on the green petroleum production

Keywords


[1]. B. Kamm, P. R. Gruber and M. Kamm, “Biorefinery In-dustrial Processes and Products: Status and Future Direc-tion,” Vol. 1-2, Wiley-Verlay Gmbtt and Co. KGaA, Weinheim, (2006).
[2]. C. V. Stevens and R. Verhe, “Renewable Bioresources Scope and Modification for Non-Food Application,” John
Wiley and Sons Ltd., England, (2004).
[3]. D. Puppan, “Environmental Evaluation of Biofuels,” Period Polytechnica, Vol. 10, No. 1, (2002), pp. 95-116.
[4]. K. S. Tyson, “Biodiesel Handling and Use Guidelines,” National Renewable Energy Laboratory, Golden, (2001), p. 22.
[5]. J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan- Jimenez and M. Crocker; Biodiesel Production from Soybean Oil Using Calcined Li-Al Layered Double Hy-droxide Catalysts. Catal. Lett., 115 (2007) 56-61.
[6]. J. Holmgren, “Biofuels: Unlocking the Potential,” ERTC 12th Annual Meeting, Barcelona, 19-21 November, (2007).
[7]. N. Eisberg, Harvesting Energy. Chem. Ind., No. 17, (2006), pp. 24-25.
[8]. European Commission (EC), “Promoting Biofuels in Europe,” Directorate-General for Energy and Transport, Bruxelles, (2004), B-1049.
[9]. Meet Clean Diesel, “Renewable Diesel Fuels”. http://www.dieselforum.org
[10]. G. Knothe, Biodiesel and Renewable Diesel: A Com-parison. Prog. Energy. Combust. Sci., 36 (2010) 364-373.
[11]. O. i. Şenol, T.-R. Viljava and A. O. I. Krause, Hydro-deoxygenation of Aliphatic Esters on Sulphided Ni-MO/γ-Al2O3 and CoMo/γ-Al2O3 Catalyst: The Effect of Water. Catal. Today., 106 (2005) 186-189.
[12]. O. i. Şenol, E.-M. Ryymin, T.-R. Viljava and A. O. I. Krause, Reactions of Methyl Heptanoate Hydrodeoxy-genation on Sulphided Catalysts. J. Mol. Catal. A. Chem., 268 (2007) 1-8.
[13]. O. i. Şenol, E.-M. Ryymin, T.-R. Viljava and A. O. I. Krause, Effect of Hydrogen Sulphide on the Hydrode-oxygenation of Aromatic and Aliphatic Oxygenates on Sulphided Catalysts. J. Mol. Catal. A. Chem., 277 (2007).
[14]. S. Bezergianni, A. Kalogianni and I. A. Vasalos, Hydro-cracking of Vacuum Gas Oil-Vegetable Oil Mixtures for Biofuels Production. Bioresour. Technol., 100 (2009) 3036-3042.
[15]. M. Ferrari, S. Bosmans, R. Maggi, B. Delmon and P. Grange, CoMo/Carbon Hydrodeoxygenation Catalysts: Influence of the Hydrogen Sulfide Partial Pressure and of the Sulfidation Temperature. Catal. Today., 65 (2001) 257-264.
[16]. M. Ferrari, R. Maggi, B. Delmon and P. Grange, Influ-ences of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst. J. Catal., 198 (2001) 47-55.
[17]. G. de la Puente, A. Gil, J. J. Pis and P. Grange, Effects of Support Surface Chemistry in Hydrodeoxygenation Reactions over CoMo/Activated Carbon Sulfided Cata-lysts. Langmuir., 15 (1999) 5800-5806.
[18]. J. Gusmaäo, D. Brodzki, G. Djéga-Mariadassou and R. Frety, Utilization of Vegetable Oils as an Alternative Source for Dieseltype Fuel: Hydrocracking on Educed Ni/SiO2 and Sulfided Ni-Mo/γ-Al2O3. Catal. Today., 4 (1989) 533-544.
[19]. W. F. Maier, W. Roth, I. Thies and P. V. Ragué Schleyer, Hydrogenolysis, IV. Gas Phase Decarboxylation of Car-boxylic Acids. Chem. Ber., 115 (1982) 808-812.
[20]. P. Mäki-Arvela, I. Kubičkova, M. Snare, K. Eränen and D. Y. Murzin, Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy. Fuel., 21 (2007) 30-41.
[21]. M. Snare, I. Kubičkova, P. Mäki-Arvela, D. Chichova, K. Eränen and D. Y. Murzin, Catalytic Deoxygenation of Unsaturated Renewable Feedstocks for Roduction of Diesel Fuel Hydrocarbons. Fuel., 87 (2008) 933-945.
[22]. P. P. Nunes, D. Brodzki, G. Bugli, G. Djega-Mariadassou, Soybean Oil Hydrocracking under Pressure: Process and General Aspect of the Transformation. Rev.
Inst. Franç. Pétrole., 41 (1986) 421-431.
[23]. M. E. Halttunena, M. K. Niemeläa, A. O. I. Krausea and A. I. Vuori, Rh/C Catalysts for Methanol Hydrocarbon-ylation. II. Activity in the Presence of MeI. Appl. Catal. A. Gen., 182 (1999) 115-123.
[24]. M. Snare, I. Kubičková, P. Mäki-Arvela, K. Eränen, J. Wärna, D. Y. Murzin, Heterogeneous Catalytic Deoxy-genation of Stearic Acid for Production of Biodiesel. Ind. Eng. Chem. Res., 45 (2006) 5708-5715.
[25]. G. W. Huber and A. Corma, Synergies between Bio- and Oil Refineries for the Production of Fuels from Biomass. Angew. Chem. Int. Ed., 46 (2007) 7184-7201.
[26]. L. Reijnders, Conditions for the Sustainability of Bio-mass Based Fuel Use. Energ. Policy., 34 (2006) 863-876.
[27]. L. C. Meher, D. V. Sagar and S. N. Naik, Technical Aspects of Biodiesel Production by Transesterification— A Review. Renew. Sust. Energ. Rev., 10 (2006) 248-268.
[28]. C. Difiglio, Using Advanced Technologies to Reduce Motor Vehicle Greenhouse Gas Emissions. Energ. Policy., 25 (1997) 1173-1178.
[29]. J. H. Marsman, J. Wildschut, F. Mahfud and H. J. Heeres, Identification of Components in Fast Pyrolysis Oil and Upgraded Products by Comprehensive Two-Dimensional Gas Chromatography and Flame Ionisation Detection. J. Chromat. A., 1150 (2007) 21-27.
[30]. J. H. Marsman, J. Wildschut, P. Evers, S. de Koning and H. J. Heeres, Identification and Classification of Com-ponents in Flash Pyrolysis Oil and Hydrodeoxygenated Oils by Two-Dimensional Gas Chromatography and Time- of-Flight Mass Spectrometry. J. Chromat. A., 1188 (2008) 17-25.
[31]. F. de Miguel Mercader, M. J. Groeneveld, S. R. A. Ker-sten, N. W. J. Way, C. J. Schaverien and J. A. Hogen-doorn, Production of Advanced Biofuels: Co-Processing of Upgraded Pyrolysis Oil in Standard Refinery Units. Appl. Catal. B. Environ., 96 (2010) 57-66.
[32]. J. D. Rocha, C. A. Luengo and C. E. Snape, Hydro- dexygenation of Oils from Ceelulose in Single and Two- Stage Hydripyrolysis. Renew. Energ., 9 (1996) 950-953.
[33]. P. Grange, E. Laurent, R. Maggi, A. Centeno and B. Del-mon, Hydrotreatment of Pyrolysis Oils from Biomass: Reactivity of the Various Categories of Oxygenated Com- pounds and Preliminary Techno-Economical study. Catal. Today., 29 (1996) 297-301.
[34]. S. P. Zhang, Y. Yongjie, T. Li, et al. Upgrading of Liq-uid Fuel from the Pyrolysis of Biomass. Bioresour. Technol., 96 (2005) 545-550.
[35]. Y. Xu, T. Wang, L. Ma, Q. Zhang and L. Wang, Up-grading of Liquid Fuel from the Vacuum Pyrolysis of Biomass over the Mo-Ni/γ-Al2O3 Catalysts. Biomass. Bioenerg., 33 (2009) 1030-1036.
[36]. Y. Xu, T. Wang, L. Ma, Q. Zhang and W. Liang, Up-grading of the Liquid Fuel from Fast Pyrolysis of Bio-mass over MoNi/γ-Al2O3 Catalysts. Appl. Energ., 87 (2010) 2886-2891.
[37]. J. Wildschut, I. Melián-Cabrera and H. J. Heeres, Cata-lyst Studies on the Hydrotreatment of Fast Pyrolysis Oil. Appl. Catal. B. Environ., 99 (2010) 298-306.
[38]. M. Stumborg, A. Wong and E. Hogan, Hydroprocessed Vegetable Oils for Diesel Fuel Improvements. Bioresour. Technol., 56 (1996) 13-18.
[39]. L. Avaullée, P. Duchet-Suchaux, M. Durandeu and J. N. Jaubert, A New Approach in Correlating the Oil Ther-modynamic Properties. J. Petrol. Sci. Eng., 30 (2001) 43-65.
[40]. C. Fragale, M. Gargano, N. Ravasio, M. Rossi and I. Santo, Catalytic Hydrogenation of Vegetable Oils: III. A Comparison of Reactivity and Selectivity between Cyclic Polyenes and Polyunsaturated Fatty Acids with Copper Chromite as Catalyst. Inorg. Chim. Acta., 82 (1984) 157-160.
[41]. J. S. Milano-Brusco and R. Schomäcker, Catalytic Hy-drogenations in Microemulsion Systems with Rh-TPPTS: Partial Hydrogenation of Sunflower Oil. Catal. Lett., 133, (2009) 273-279.
[42]. Ullmann, “Ullmann’s Encyclopedia of Industrial Chemis-try,” Vol. 13, Wiley-VCH Verlag GmbH & Co., Wein-heim, (2003).
[43]. R. C. Christiansen, Neste Oil Building Singapore Re-newable Diesel Plant. Biodiesel Magazine, March (2009). http://www.biodieselmagazine.com/article.
[44]. Schill, S.R. JAL flight to test camelina-jatropha-algae fuel. Biodiesel Magazine, January (2008). http://www.biodieselmagazine.com/article
[45]. J. L. Harwood and F. D. Gunstone, Occurrence and char-acterisation of oils and fats,” In: F. D. Gunstone, J. L. Harwood and J. L. Dijkstra, Eds., The Lipid Handbook, CRC Press, Boca. Raton., (2007) 37-141.
[46]. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M, Pose-witz, M. Seibert, et al., Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Erspectives and Ad-vances. Plant. J., 54, (2008) 621-639.
[47]. J. L. Guil-Guerrero, F. Gómez-Mercado, F. García-Marotoc and P. Campra-Madrida, Occurrence and Characterization of Oils Rich in γ-Linolenic Acid: Part I: Echium Seeds from Macaronesia. Phytochem., 53 (2000) 451-456.
[48]. D. Kubička, J. Chudoba, P. Šimaček, “Europacat VIII,” Turku, 26-31 August (2007).
[49]. N. Zeman, “Neste Oil Starts Construction on Europe’s Largest Renewable Fuels Plant,” Biodiesel Magazine, May (2009). http://www.biodieselmagazine.com/article
[50]. M. Izadifar and M. Z. Jahromi, “Application of Genetic Algorithm for Optimization of Vegetable Oil Hydrogena-tion Process. J. Food. Eng., 78 (2007) 1-8.
[51]. G. N. da Rocha Filho, D. Brodzki and G. Djéga-Ma- riadassou Formation of Alkanes, Alkylcycloalkanes and Alkylbenzenes during the Catalytic Hydrocracking of Ve- getable Oils, Fuel., 72 (1993) 543-549.
[52]. D. Kubička and L. Kaluža, Deoxygenation of Vegetable Oils over Sulfided Ni, Mo and NiMo Catalysts. Appl. Catal. A. Gene., 372 (2010) 199-208.
[53]. P. Šimáček, D. Kubička, G. Šebor and M. Pospíšil, Fuel Properties of Hydroprocessed Rapeseed Oil. Fuel., 89 (2010) 611-615.
[54]. P. Šimáček, D. Kubička, G. Šebor and M. Pospíšil, Hy-droprocessed Rapeseed Oil as a Source of Hydrocar-bon-Based Biodiesel. Fuel., 88 (2009) 456-460.
[55]. P. Šimaček and D. Kubičk, Hydrocracking of Petroleum Vacuum Distillate Containing Rapeseed Oil: Evaluation of Diesel Fuel. Fuel., 89 (2010) 1508-1513.
[56]. K. C. Kwon, H. Mayfield, T. Marolla, B. Nichols and M. Mashburn, Catalytic Deoxygenation of Liquid Biomass
[57]. for Hydrocarbon Fuels. Renew. Energ., 36 (2011) 907-915.
[58]. J. Monniera, H. Sulimmab, A. Dalaib and G. Caravaggio, Hydrodeoxygenation of Oleic Acid and Canola Oil over Alumina-Supported Metal Nitrides. Appl. Catal. A. Gen., 382 (2010) 176-180.
[59]. O. V. Kikhtyanin, A. E. Rubanov, A. B. Ayupov and G. V. Echevsky, Hydroconversion of Sunflower Oil on Pd/SAPO-31 Catalyst. Fuel., 89 (2010) 3085-3092.
[60]. J. Hancsók, M. Krár, S. Magyar, L. Boda, A. Holló and D. Kalló, Investigation of the Production of High Cetane Number Bio Gas Oil from Pre-Hydrogenated Vegetable Oils over Pt/HZSM-22/Al2O3. Microporous. Mesoporous. Mater., 101 (2007) 148-152.
[61]. D. Kubička and J. Hoŕácek, Deactivation of HDS Cata-lysts in Deoxygenation of Vegetable Oils. Appl. Catal. A. Gene., 394 (2010) 9-17.
[62]. E. Furimsky, Chemistry of Catalytic Hydrogenation. Catal. Rev. Sci. Eng., 25 (1983) 421-458.
[63]. E. Dorrestijn and P. Mulder, The Radical-Induced De-composition of 2-Methoxyphenol. J. Chem. Soc., 2 (1999) 777-780.
[64]. G. N. da Rocha Filho, D. Brodzki and G. Djéga-Mariadassou, Formation of Alkanes, Alkylcycloalkanes and Alkyl-benzenes during the Catalytic Hydrocracking of Vegeta-ble Oils. Fuel., 72 (1993) 543-549.
[65]. S. Echeandia, P. L. Arias, V. L. Barrio, B. Pawelec and J. L. G. Fierro, Synergy Effect in the HDO of Phenol Over Ni-W Catalysts Supported on Active Carbon: Effect of Tungsten Precursors. Appl. Catal. B. Environ., 101 (2010) 1-12.
[66]. L. Boda, G. Onyestyák, H. Solt, F. Lónyi, J. Valyon and A. Thernesz, Catalytic Hydroconversion of Tricaprylin and Caprylic Acid as Model Reaction for Biofuel Produc-tion from Triglycerides. Appl. Catal. A. Gene., 374 (2012) 158-169.
[67]. Kubičková, M. Snare, K. Eränen, P. Mäki-Arvela and D.Y. Murzin, Hydrocarbons for Diesel Fuel via Decar-boxylation of Vegetable Oils. Catal. Today., 106 (2005) 197-200.
[68]. Q. Smejkala, L. Smejkalováa and D. Kubičkab, Ther-modynamic Balance in Reaction System of Total Vegeta-ble Oil Hydrogenation. Chem. Eng. J., 146 (2009) 155-160.
[69]. S. Vitu, R. Privat, J. N. Jaubert and F. Mutelet, Predict-ing the Phase Equilibria of CO2 + Hydrocarbon Systems with the PPR78 Model (PR EOS and kij Calculated through a Group Contribution Method). J. Supercrit. Fluids., 45 (2008) 1-26.
[70]. G. Joback, A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques. Master’s Thesis, MIT, Cambridge, (1984).
[71]. Q. Smejkala, L. Smejkalová and D. Kubička, Thermo-dynamic Balance in Reaction System of Total Vegetable Oil Hydrogenation. Chem. Eng. J., 146 (2009) 155-160.
[72]. E. Laurent and B. Delmon. Study of the Hydrodeoxy-genation of Carbonyl, Carboxylic and Guaiacyl Groups over Sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 Catalysts: II. Influence of Water, Ammonia and Hydrogen Sulfide. Appl. Catal. A. Gen., 109 (1994) 97-115.
[73]. O. I. Şenol, T.-R. Viljava and A. O. I. Krause, Effect of Sulphiding Agents on the Hydrodeoxygenation of Ali-phatic Esters on Sulphided Catalysts. Appl. Catal. A. Gen., 326 (2007) 236-244.
[74]. V. N. Bui, G. Toussaint, D. Laurenti, C. Mirodatos and C. Geantet, Co-Processing of Pyrolisis Bio Oils and Gas Oil for New Generation of Bio-Fuels: Hydrodeoxygena-tion of Guaïacol and SRGO Mixed Feed. Catal. Today., 143 (2009) 172-178.
[75]. O. İ. Şenol, T.-R. Viljava and A. O. I. Krausede, Hydro-deoxygenation of Methyl Esters on Sulphided NiMO/γ- Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today., 100 (2005) 331-335.
[76]. Sebos, A. Matsoukas, V. Apostolopoulos and N. Pa-payannakos, Catalytic Hydroprocessing of Cottonseed Oil in Petroleum Diesel Mixtures for Production of Re-newable Diesel. Fuel., 88 (2009) 145-149.
[77]. Walendziewski, M. Stolarski, R. Łużny and B. Klimek, Hydroprocesssing of Light Gas Oil—Rape Oil Mixtures. Fuel. Process. Technol., 90 (2009) 686-691.
[78]. G. W. Huber, P. ƠConnor and A. Corma, Processing Biomass in Conventional Oil Refineries: Production of High Quality Diesel by Hydrotreating Vegetable Oils in Heavy Vacuum Oil Mixtures. Appl. Catal. A. Gene., 329 (2007) 120-129.
[79]. F. Z. Benhachem; T. A.; Fouzia Bouabdallah. Kinetic study of adsorption methylene blue dye from aqueous solutions using activated carbon. Chem. Rev. Lett., 2 (2019) 33-39.
[80]. S. Sarhandi., Z. Rahmani., R. Moghadami, M. Vali, E. Vessally. New insight in Hiyama cross-coupling reactions: Decarboxylative, denitrogenative and desulfidative couplings. Chem. Rev. Lett., 1 (2018) 9-15.
[81]. F. Valinia; N. Shojaei; P. Ojaghloo. Novel 1-(4-chlorophenyl)-3-(2-ethoxyphenyl)triazene ligand: Synthesis, X-ray crystallographic studies, spectroscopic characterization and DFT calculations. Chem. Rev. Lett., 2 (2019) 90-97.
[82]. S. A. Siadati; K Kula; E. Babanezhad. The possibility of a two-step oxidation of the surface of C20 fullerene by a single molecule of nitric (V) acid. Chem. Rev. Lett., 2 (2019) 2-6.
[83]. F. Krika; A. Krika; A. Azizi. Arundo donax L. as a low-cost and promising biosorbent for the removal of crystal violet from aqueous media: kinetic, isotherm and thermodynamic investigations. Chem. Rev. Lett., 2 (2019) 59-68.
[84]. S. Majedi; H. G. Rauf; M. Boustanbakhsh. DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett., 2 (2019) 176-186.
[85]. R. Kakulvand. The effects of transient heat flux on the tube in contact with the natural convection, on enthalpy and entropy generation, for developed laminar flow of fluid with high Prandtl number. Chem. Rev. Lett., 2 (2019) 165-175.
[86]. D. E. Arthur; A. A. Oyibo; S. N. Adawara; S. Hassan; E. Uwaiya. Miscibility study of poly acrylamide (PAM) and Acacia Senegal (gum arabic) blends. Chem. Rev. Lett., 2 (2019) 157-164.
[87]. E. A. Mahmood; B. Azizi; S. Majedi. Decarboxylative cyanation and azidation of carboxylic acids: An overview. Chem. Rev. Lett., 3 (2020) 2-8.
R. Moladoust. Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem. Rev. Lett., 2 (2019) 151-156.
[88]. C. Mustapha; D. Benamar. Comparison of the bromate ions removal by nanofiltration membranes made from different polymers at different conditions. Chem. Rev. Lett., 2 (2019) 118-122.
[89]. M. Nikpassand; Leila Zare Fekri. Synthesis of bis coumarinyl methanes using of potassium 2-oxoimidazolidine-1,3-diide as a novel, efficient and reusable catalyst. Chem. Rev. Lett., 2 (2019) 7-12.
[90]. A. O. Gezerman. Effects of ammonium thiosulfate and guanyl thiourea as calcium ammonium nitrate inhibitors on fertilization and plants. Chem. Rev. Lett., 2 (2019) 84-89.
[91]. N. Norouzi, M. Fani, Z. K. Ziarani, The fall of oil Age:A scenario planning approach over the last peak oil of human history by 2040, Journal of Petroleum Science and Engineering, Volume 188, (2020), 106827, ISSN 0920-4105.
[92]. F. B.; Z. Asadi; Y. J. Sadeghi. Synthesis, spectroscopic and computational investigation of bis (3-methoxyphenylthio) ethyl) naphthalene. Chem. Rev. Lett., 1 (2018) 68-76.
[93]. F. Gharibzadeh; S. Gohari; K. Nejati; B. Hashemzadeh;
S. Mohammadiyan. The Be atom doping: An effective way to improve the Li-atom adsorption in boron rich nanoflake of B24. Chem. Rev. Lett., 1 (2018) 16-22.
[94]. E. Babanezhad; A. Beheshti. The Possibility of Selective Sensing of the Straight-Chain Alcohols (Including
Methanol to n-Pentanol) Using the C20 Fullerene and C18NB Nano Cage. Chem. Rev. Lett., 1 (2018) 82-88.
[95]. M. H. N. Janjanpour; M. Vakili; S. Daneshmehr; K. Jalalierad; F. Alipour. Study of the Ionization Potential, Electron Affinity and HOMO-LUMO Gaps in the Smal Fullerene Nanostructures. Chem. Rev. Lett., 1 (2018) 45-48.