Decarboxylative cyanation and azidation of carboxylic acids: An overview

Document Type : Review Article

Authors

College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq

Abstract

The present review gives an overview over the synthesis of organic nitriles and azides through the decarboxylative cyanation and azidation of carboxylic acids, respectively. Mechanistic features of the reactions are considered and discussed in detail.

Graphical Abstract

Decarboxylative cyanation and azidation of carboxylic acids: An overview

Keywords


[1] (a) F. Fleming, Nitrile-containing natural products, Nat. Prod. Rep, 16 (1999) 597-606; (b) F.F. Fleming, L. Yao, P. Ravikumar, L. Funk, B.C. Shook, Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore, J. Med. Chem., 53 (2010) 7902-7917; (c) A. Kleemann, Pharmaceutical substances: Syntheses, Patents, Applications, 4th ed.; Thieme: Stuttgart, 2001.
[2] (a) J. Wang, F. Xu, T. Cai, Q. Shen, Addition of amines to nitriles catalyzed by ytterbium amides: An efficient one-step synthesis of monosubstituted N-arylamidines, Org. Lett., 10 (2008) 445-448; (b) T. Horneff, S. Chuprakov, N. Chernyak, V. Gevorgyan, V.V. Fokin, Rhodium-catalyzed transannulation of 1, 2, 3-triazoles with nitriles, J. Am. Chem. Soc., 130 (2008) 14972-14974; (c) S. Lu, J. Wang, X. Cao, X. Li, H. Gu, Selective synthesis of secondary amines from nitriles using Pt nanowires as a catalyst, Commun. Chem., 50 (2014) 3512-3515; (d) X. Wang, Y. Huang, Y. Xu, X. Tang, W. Wu, H. Jiang, Palladium-catalyzed denitrogenative synthesis of aryl ketones from arylhydrazines and nitriles using O2 as sole oxidant, J. Org. Chem., 82 (2017) 2211-2218.
[3] U. Dutta, D.W. Lupton, D. Maiti, Aryl nitriles from alkynes using tert-butyl nitrite: Metal-free approach to C-C bond cleavage, Org. Lett., 18 (2016) 860-863.
[4] (a) T. Cheng, Review of novel energetic polymers and binders–high energy propellant ingredients for the new space race, Des. Monomers Polym., 22 (2019) 54-65; (b) W.R. Martin, D.W. Ball, Small organic azides as high energy materials: Perazidoacetylene,‐ethylene, and‐allene, ChemistrySelect, 3 (2018) 7222-7225.
[5] (a) T.-S. Lin, W.H. Prusoff, Synthesis and biological activity of several amino analogs of thymidine, J. Med. Chem., 21 (1978) 109-112; (b) D.B. Smith, G. Kalayanov, C. Sund, A. Winqvist, T. Maltseva, V.J.-P. Leveque, S. Rajyaguru, S.L. Pogam, I. Najera, K. Benkestock, The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4′-azidocytidine against hepatitis C virus replication: the discovery of 4′-azido-2′-deoxy-2′-fluorocytidine and 4′-azido-2′-dideoxy-2′, 2′-difluorocytidine, J. Med. Chem., 52 (2009) 2971-2978; (c) J.A. Raeburn, J.D. Devine, Pharmacological findings during azidocillin treatment of chest infections, Scand. J. Infect. Dis., 5 (1973) 135-139; (d) P.P. Geurink, W.A. van der Linden, A.C. Mirabella, N. Gallastegui, G. de Bruin, A.E. Blom, M.J. Voges, E.D. Mock, B.I. Florea, G.A. van der Marel, Incorporation of non-natural amino acids improves cell permeability and potency of specific inhibitors of proteasome trypsin-like sites, J. Med. Chem., 56 (2013) 1262-1275.
[6] (a) N. Rodriguez, L.J. Goossen, Decarboxylative coupling reactions: a modern strategy for C–C-bond formation, Chem. Soc. Rev., 40 (2011) 5030-5048; (b) J. Schwarz, B. König, Decarboxylative reactions with and without light–a comparison, Green Chem., 20 (2018) 323-361.
[7] R. Shang, Transition metal-catalyzed decarboxylation and decarboxylative cross-couplings, in: New Carbon–Carbon Coupling Reactions Based on Decarboxylation and Iron-Catalyzed C–H Activation, Springer, 2017, pp. 3-47.
[8] (a) S. Arshadi, S. Ebrahimiasl, A. Hosseinian, A. Monfared, E. Vessally, Recent developments in decarboxylative cross-coupling reactions between carboxylic acids and N–H compounds, RSC Adv., 9 (2019) 8964-8976; (b) A. Monfared, S. Ebrahimiasl, M. Babazadeh, S. Arshadi, E. Vessally, Recent advances in decarboxylative trifluoromethyl (thiol) ation of carboxylic acids, J. Fluor. Chem., 220 (2019) 24-34; (c) A. Hosseinian, F.A.H. Nasab, S. Ahmadi, Z. Rahmani, E. Vessally, Decarboxylative cross-coupling reactions for P(O)–C bond formation, RSC Adv., 8 (2018) 26383-26398; (d) A. Hosseinian, P.D.K. Nezhad, S. Ahmadi, Z. Rahmani, A. Monfared, A walk around the decarboxylative C–S cross-coupling reactions, J. Sulfur Chem., 40 (2019) 88-112.
[9] D.A. Klein, Nitrile synthesis via the acid-nitrile exchange reaction, J. Org. Chem., 36 (1971) 3050-3051.
[10] D. Cantillo, C.O. Kappe, Direct preparation of nitriles from carboxylic acids in continuous flow, J. Org. Chem., 78 (2013) 10567-10571.
[11] D. Cartigny, A. Dos Santos, L. El Kaim, L. Grimaud, R. Jacquot, P. Marion, Nitrile synthesis through catalyzed cascades involving acid–nitrile exchange, Synthesis, 46 (2014) 1802-1806.
[12] D.H. Barton, J.C. Jaszberenyi, E.A. Theodorakis, The invention of radical reactions. Part XXIII new reactions: Nitrile and thiocyanate transfer to carbon radicals from sulfonyl cyanides and sulfonyl isothiocyanates, Tetrahedron, 48 (1992) 2613-2626.
[13] F. Le Vaillant, M.D. Wodrich, J. Waser, Room temperature decarboxylative cyanation of carboxylic acids using photoredox catalysis and cyanobenziodoxolones: a divergent mechanism compared to alkynylation, Chem. Sci., 8 (2017) 1790-1800.
[14] F.L. Vaillant, J. Waser, Decarboxylative alkynylation and cyanation of carboxylic acids using photoredox catalysis and hypervalent iodine reagents, Chimia, 71 (2017) 226-230.
[15] N.P. Ramirez, B. König, J.C. Gonzalez-Gomez, Decarboxylative cyanation of aliphatic carboxylic acids via visible-light flavin photocatalysis, Org. Lett., 21 (2019) 1368-1373.
[16] K. Ouchaou, D. Georgin, F. Taran, Straightforward conversion of arene carboxylic acids into aryl nitriles by palladium-catalyzed decarboxylative cyanation reaction, Synlett, (2010) 2083-2086.
[17] O. Loreau, D. Georgin, F. Taran, D. Audisio, Palladium‐catalyzed decarboxylative cyanation of aromatic carboxylic acids using [13C] and [14C]‐KCN, J. Label. Compd. Radiopharm., 58 (2015) 425-428.
[18] Z. Fu, Z. Li, Y. Song, R. Yang, Y. Liu, H. Cai, Decarboxylative halogenation and cyanation of electron-deficient aryl carboxylic acids via cu mediator as well as electron-rich ones through pd catalyst under aerobic conditions, J. Org. Chem., 81 (2016) 2794-2803.
[19] Z. Fu, L. Jiang, Z. Li, Y. Jiang, H. Cai, Ag/Cu-mediated decarboxylative cyanation of aryl carboxylic acids with K4Fe (CN) 6 under aerobic conditions, Synth. Commun., 49 (2019) 917-924.
[20] F. Song, R. Salter, L. Chen, Development of decarboxylative cyanation Reactions for C-13/C-14 carboxylic acid labeling using an electrophilic cyanating reagent, J. Org. Chem., 82 (2017) 3530-3537.
[21] E. Nyfeler, P. Renaud, Decarboxylative radical azidation using MPDOC and MMDOC esters, Org. Lett., 10 (2008) 985-988.
[22] C. Liu, X. Wang, Z. Li, L. Cui, C. Li, Silver-catalyzed decarboxylative radical azidation of aliphatic carboxylic acids in aqueous solution, J. Am. Chem. Soc., 137 (2015) 9820-9823.
[23] Y. Zhu, X. Li, X. Wang, X. Huang, T. Shen, Y. Zhang, X. Sun, M. Zou, S. Song, N. Jiao, Silver-catalyzed decarboxylative azidation of aliphatic carboxylic acids, Org. Lett., 17 (2015) 4702-4705.
[24] Z.C. Kennedy, C.A. Barrett, M.G. Warner, Direct functionalization of an acid-terminated nanodiamond with azide: enabling access to 4-substituted-1, 2, 3-triazole-functionalized particles, Langmuir, 33 (2017) 2790-2798.
[25] D.C. Marcote, R. Street-Jeakings, E. Dauncey, J.J. Douglas, A. Ruffoni, D. Leonori, Photoinduced decarboxylative azidation of cyclic amino acids, Org. Biomol. Chem., 17 (2019) 1839-1842.