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1. Introduction 

    Enthalpy and entropy generation are obtained by 

applying constant heat flux on different parts of the 

tubes, compared to the convective heat transfer in 

various amounts. Different parts of tube are applied 

entropy generation and enthalpy variation in radially 

and axially. In industry, in order to achieve the most 

economical efficiency, minimum entropy generation for 

the length and radius of the tube as well as the least 

amount of enthalpy in the tube at different ratios is 

considered. The high amount of heat is applied to wall 

boundary layer because the fluid in the tube has a high 

Prandtl number. Laboratory tests are executed for heat 

flux in vertical, horizontal and spiral tubes [1-16], 

critical heat flux (CHF) has been tested in horizontal 

tube in addition [13, 15]. Critical heat flux has been 

investigated in some cases in helical tubes [2, 5]. 

temperature possessing uniform has been provided a 

method to predict bulk temperature, using the tube wall 

outer wall heat flux, [17]. Critical heat flux model has 

been shown based on support vector machine (SVM) in 

concentric-tube, by Jiejin cai [18]. Convective heat 

transfer of molten salt in tubes copper-coated with 

uniform heat flux has been employed by shen et al [19]. 

Critical heat flux of boiling cold water flow with no 

internal twisted bar under high mass flux has been 

studied by Yan, et al. [20]. Analysis of entropy 

generation of turbulent convection has been provided 

with constant heat flux in the wall of a circular tube by 

Bianco, et al[21]. The effects of wall heat flux are 

exhibited on entropy generation during the turbulent 

convective heat transfer, for tubes with different 

characteristics, by Mohseni, et al [22]. Non-uniform 

heat transfer have been studied numerical and 

experimental studies of heat transfer in solar thermal 
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absorber tubes with by chang et al [23]. Experimental 

studies are carried out on critical heat flux in vertical 

tube under oscillatory flux at low pressure by Zhao, et al 

[10]. Experimental studies have been achieved on heat 

transfer in supercritical water flow in a circular tube 

with high heat flux by Gu, et al [11]. Mohammed, et al, 

has assayed convection heat transfer for a fixed heat 

flux in a vertical tube [20]. Non-uniform heat flux has 

been used in tube in several ways [9, 14, 19, 24, 25]. 

Natural convection has been utilized in CFD simulation 

in order to study the effect of condenser tube dip, by 

Minocha, et al [26]. Analysis of the minimum entropy 

generation has been investigated on the tube in different 

situations [27-36]. Entropy generation of forced 

convection have been studied on a horizontal oval tube  

by Esfahani, et al [37]. Convective heat transfer at the 

supercritical pressure of tube, on the fluids, has been 

reviewed by Huange, et al [38]. Minimum entropy 

generation in the boundary layer as well as natural and 

forced convection has been demonstrated by Bejan, Jlji, 

Incropera, et al [31, 46, 47]. Entropy generation and 

energy conversion rates in a tube with magnetic field 

have been represented by Akbar, et al [39]. Entropy 

generation of mixed convection in a square cavity 

containing a rotating drum has been studied by Wang, et 

al [40]. Entropy generation of forced convective flow on 

a  horizontal oval tube has been represented by 

Esfahani, et al [37]. Entropy generation in a vertical 

tube with solar heat flux has been shown by Zhang, et 

al[41]. Chen, et al have investigated entropy generation 

of forced convection [44]. Mixed convection in a 

horizontal cylinder has been tested by Elsherbiny, et 

al[42]. The effects of natural convection of channel, in 

helical tube, have been studied by Heo, et al [43]. Some 

experimental and numerical methods have been 

suggested to obtain natural convective heat transfer and 

characteristics of tubes [35, 38, 43, 44].  Numerical 

investigations of convective heat transfer and entropy 

generation of laminar flow in helical tube by Kumai, et 

al [45]. Effect of non-uniform temperature distribution 

on entropy generation and enthalpy for the laminar 

developing pipe flow of a high Prandtl number fluid is 

shown by Reza kakulvand [48]. Effect of non-uniform 

convection distribution on entropy generation and 

enthalpy for the laminar developing pipe flow of a high 

Prandtl number fluid with high Prandtl number is 

investigated by Reza kakulvand [50]. The effects of 

transient radiant flow on pipe in contact with natural 

convection, for developed laminar flow of fluid with 

high Prandtl number, on enthalpy and entropy 

production by Reza kakulvand is presented [49]. 

Investigation of drag coefficients in gas – liquid tower 

and boundary conditions on pipes is obtained by Reza 

kakulvand [51]. 

The heat flux and constant convective heat transfer are 

investigated developed laminar flow of tube, by 

applying in the different parts of tube wall for several 

cases. There are shown the effects of different ratios of 

heat flux and convective heat transfer along the tube 

wall in different cases. In each case temperature 

distribution, enthalpy as well as entropy is studied. The 

optimized conditions for enthalpy and entropy are 

applied.  

 

2. Physical model   

 

Tube geometry has been designed as follows: Diameter: 

0.025m, Length: 1m, and 5 sections. Transient heat flux 

changes on convective heat transfer in 6 cases are 

investigated. The fluid velocity in the tube is fixed and 

steady-state conditions prevail. Due to the constant 

convective flow changes and heat flux, the temperature 

fluctuates. Specifications of tube and fluid properties 

are extracted from table 1. 

 

 

In high Prandtl numbers, incompressible fluid, 

symmetry of tube and laminar flow, steady-state 

condition prevails. Prandtl number of fluid is 13400 and 

a material indeterminate. A schematic of tube geometry 

that heat flux and convective heat transfer enter to, is 

displayed in Figure 1. In simulation, mesh with 30×300 

is used for the tube length and width. 

  
Figure1; A schematic of the pipe convective heat transfer and 

heat flux 

Table 1, 
pipe geometry specifications and Fluid properties 

are shown. 

Fluid properties Variable value 

Specific heat transfer )/( kgkjC p  1845 

at constant pressure   

Thermal conductivity )/( mkwk  0.146 

Density )/( 3mkg  889 

Viscosity (at Tref) )/( 2mNS  1.06 

Prandtl number  , pr  13400 

Inlet axial fluid 

velocity  )/( smVi  
0.02 

Inlet fluid temperature 

Ti(k)    
 

273.15 

Reference 

temperature, Tref (k)  
 288.16 

geometry of pipe   

Pipe length )(mD  0.025 

Pipe diameter )(mL  1 
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3. The governing equations 

In bejan's heat transfer, the governing equations in the 

two-dimensional tube coordinates x, z, are as follows: 

Continuity equations: 
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Energy equations: 
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Where the energy loss term is: 
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Enthalpy and entropy generation:  

 

   

 

According to the high heat flux of walls and high 

Prandtl number of fluid with no slip in the tube wall, 

high amounts of enthalpy and entropy generation are 

created. The amounts of enthalpy and entropy 

generation, in uniform heat flux, are dramatically more 

than the amount of convective heat transfer. Entropy 

generation consists of two semesters dependent on 

thermal conductivity and temperature gradient along the 

radius and axis and semester dependent on loss and 

viscosity.  

4. Problem definition 

The aim of this article is to find the minimum amounts 

of enthalpy and entropy generation created by passing 

the constant heat flux through the tube wall. Different 

values of enthalpy and entropy generation are obtained 

for various cases that are dependent on the amounts of 

heat flux and convective heat transfer along the tube. 

The amounts of uniform heat flux and convective heat 

transfer are 25000 (W/km2) and 20 (W/m2k), 

respectively.  

Temperature distribution along the radius as well as 

entropy generation and enthalpy along the wall as a 

result of transient heat flux on the tube have been shown 

in figures 3-7. In addition, simulation has been 

displayed for 6 cases. In the first case constant 

convective heat transfer has been applied to the tube 

wall and in the 6th, there is uniform heat flux on the 

tube. 

5. Results and discussion 

When the fluid enters the cylinder, the heat enters too, 

and therefore, velocity and temperature distribution 

profiles are created in the tube. Due to the prevailing the 

steady state, velocity distribution profile is fixed, but, 

profiles of temperature distribution, enthalpy and 

entropy generation along the tube are variables because 

of changes in boundary conditions of heat flux and 

convective heat transfer. In all cases, the temperature at 

the center of the tube and the radius of 0.004 meter is 

almost constant and temperature changes along the 

radius in the range of 0.004 meter begin. In the first 

case, only convection along the tube wall is restored. In 

the first case, temperature at the beginning of the tube to 

the end is an upward trend.  

In the cases 2-4, entering the heat flux to the cylinder, 

the concavity of curves varies. Approaching the wall 

along the radius, along with changes in temperature, for 

flow lines with the similar radial sizes, when concavity 

is downward, the temperature at the beginning of the 

tube is higher than the temperature at the end of the 

tube. When the concavity is upward, in lines closer to 

the wall, temperature at the end of the tube is less than 

the temperature at the beginning of one. In the cases 2-

5, due to the higher temperature of the heat flux than 

convective heat transfer. Heat flux significantly 

increases the tube temperature more advanced heat flux 

along the tube, the fluid temperature is increased. In the 

case 6, the temperature at the bottom of the tube is more 

than the beginning. Temperature changes along the 

radius in different parts of the wall are shown in Figure 

3. 

 Entropy generation in the central tube lines, up to the 

specified radius, Changes very little. In the first case, 

entropy generation is slightly distributed along the 

radius. In the first case, each of profile, possess two 

upward and then downward cavities. In cases 2-6, 

entering heat flux to the wall, entropy generation 

increases along the radius. Manufacturing of entropy 

profiles with border thermal flux possess several 

milestones. As thermal flux on the wall goes on, entropy 

generation at the beginning of the tube is more than the 

end. Entropy generation changes are shown along the 

radius in Figure 4. In figure 5, enthalpy changes 

diagrams along the radius are illustrated. In the first 

case, approaching the tube wall leads to increases 

enthalpy. In cases, 2-5, entering heat flux to the wall, 

under convective heat transfer boundary conditions, 

enthalpy increases significantly. 
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As heat flux increases, the amount of enthalpy in the 

end of tube precedes the beginning. In the case 6, the 

enthalpy value increases near the wall.  

In the cases 1, 5 and 6, the amount of enthalpy increases 

along the tube. In Figure 6, enthalpy change is observed 

along the wall. In the first case, there is only convective 

heat transfer and so, enthalpy changes along the wall are 

upside. With the arrival of the heat flux, in the next case 

due to the large amount of enthalpy under heat flux than 

convective heat transfer, diagram of enthalpy versus 

wall length under heat   flux is   ascending   and    under 

convective heat transfer boundary conditions is 

descending. 

 

 

In the maximum point of enthalpy versus wall length, 

convection is replaced with heat flux. This observed 

trend is observed for other cases. In case 6, a constant 

heat flux is applied to the wall and then, enthalpy is 

increasing. In figure 7, for the first case with low heat as 

a result of convective heat transfer, entropy generation 

is almost constant. 

 Under heat flux boundary conditions, entropy 

generation along the wall reduces downward. Due to the 

higher heat flux than convective heat transfer, entropy 

generation, at the point where the boundary conditions 

change, suddenly decreases. In the case 6, Heat flux 

boundary condition is applied only. 

Figure 2. Convective heat transfer and heat flux in contact with the wall for 6 case 
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Figure 3. Temperature changes along the radius in 6 cases, at heat flux boundary conditions and 

convective heat transfer 
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Figure 4. Entropy generation along the radius in six cases, at heat flux boundary conditions and 

convective heat transfer 
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Figure 5. Enthalpy along the tube radius in six cases, at heat flux boundary conditions and convective 

heat transfer 
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Figure 6. Enthalpy along the tube wall in six cases, at heat flux boundary conditions and convective 

heat transfer 
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6. conclusion 
The results of this work are applicable to constant heat 

flux, for electrical coils in which heat flux is transferred 

to the channel or tube (the first case), as well as 

convective heat transfer in environments with natural or 

forced convection (case 6). As a result of a tube or 

channel bearing heat flux, in contact with the 

environment of natural convection, the cases 2-5 

emerge the pipe is passed through environments with 

different. Minimum entropy generation is in all cases 

at the end of the tube. application are used in tubes 

contact with convection and various fluids and air in 

convective heat transfer in environments with natural or 

forced convection the electric coil is wrapped on the tube as 

heat flux. Applications of convection distribution tubes 

electric and diesel furnace, solar water heaters, 

refrigerant tube.   In the border areas of the pipe, the 

temperature varies; so the dramatic fluctuations were 

observed in the entropy generation. The results of this 

article is created on the channel wall channels that are 

passed through different environments.  Electric and  

 

 

 

diesel furnace, solar water heaters, refrigerant tube and 

tubes in hot and cold weather. Minimum entropy 

generation are investigated electric and diesel furnace, 

solar water heaters, refrigerant tube.[25,48,49,50,51]  
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