[1] B. Niezgoda-Żelasko, and J. Żelasko, Refrigerant boiling at low heat flux in vertical tubes with heat transfer enhancing fittings. Int. J. Refrig., 54 (2015) 151-169.
[2] C. Chen, et al., Experimental study on critical heat flux characteristics of R134a flow boiling in horizontal helically-coiled tubes. Int. J. Therm. Sci., 50 (2011) 169-177.
[3] A. Olekhnovitch, J. Sun, and A. Teyssedou, A complex but accurate correlation for predicting critical heat flux in a round tube for low and medium pressures under circumferentially non-uniform heating conditions. Int. J. Heat. Mass. Transf., 51 (2008) 2041-2054.
[4] Z. Li, A new constant heat flux model for vertical U-tube ground heat exchangers. Energ. Buildings., 45 (2012) 311-
316.
[5] K. Ezato, et al., Critical heat flux experiments using a screw tube under DEMO divertor-relevant cooling conditions. Fusion. Eng. Des., 83 (2008) 1097-1101.
[6] Z. Liu, L. Liao, and T. Zhang, Critical heat flux of countercurrent boiling in an inclined small tube with closed bottom. Int. Commun. Heat. Mass. Transf., 35 (2008) 995-1000.
[7] J. Pan, et al., Critical heat flux prediction model for low quality flow boiling of water in vertical circular tube. Int. J. Heat. Mass. Transf., 99 (2016) 243-251.
[8] W. Fuqiang, et al., Effects of glass cover on heat flux distribution for tube receiver with parabolic trough collector system. Energ. Convers. Manage., 90 (2015) 47-52.
[9] H. Shariatmadar, et al., Experimental and numerical study on heat transfer characteristics of various geometrical arrangement of impinging jet arrays. Int. J. Therm. Sci., 102 (2016) 26-38.
[10] D. W. Zhao, et al., Experimental research on transient critical heat flux in vertical tube under oscillatory flow condition. Int. J. Multiph. Flow., 37 (2011) 1235-1244.
[11] H. Y. Gu, M. Zhao, and X. Cheng, Experimental studies on heat transfer to supercritical water in circular tubes at high heat fluxes. Exp. Therm. Fluid. Sci., 65 (2015) 22-32.
[12] H. A. Mohammed, and Y. K. Salman, Free convective heat transfer from a constant heat flux vertical circular tube with different entrance restrictions length. Energ. Convers. Manage., 48 (2007) 2233-2243.
[13] K. Hata, Y. Shirai, and S. Masuzaki, Heat transfer and critical heat flux of subcooled water flow boiling in a HORIZONTAL circular tube. Exp. Therm. Fluid. Sci., 44 (2013) 844-857.
[14] D. de Faoite, et al., Inverse estimate of heat flux on a plasma discharge tube to steady-state conditions using thermocouple data and a radiation boundary condition. Int. J. Heat. Mass. Transf., 77 (2014) 564-576.
[15] C. B. Tibiriçá, G. Ribatski, and J.R. Thome, Saturated flow boiling heat transfer and critical heat flux in small horizontal flattened tubes. International Journal of Heat and Mass Transfer, 2012. 55 (25–26): p. 7873-7883.
[16] J. Yan, et al., Subcooled flow boiling heat transfer of water in a circular tube under high heat fluxes and high mass fluxes. Fusion. Eng. Des., 100 (2015) 406-418.
[17] M. Lin, Q. W. Wang, and Z. X. Guo, A simple method for predicting bulk temperature from tube wall temperature with uniform outside wall heat flux. Int. Commun. Heat. Mass. Transf., 39 (2012) 582-586.
[18] J. Cai, Applying support vector machine to predict the critical heat flux in concentric-tube open thermosiphon. Ann. Nucl. Energ., 43 (2012) 114-122.
[19] X. Shen, et al., Convective heat transfer of molten salt in circular tube with nonuniform heat flux. Exp. Therm. Fluid. Sci., 55 (2014) 6-11.
[20] J. Yan, et al., Critical heat flux of highly subcooled water flow boiling in circular tubes with and without internal twisted tapes under high mass fluxes. Int. J. Heat. Mass.
Transf., 95 (2016) 606-619.
[21] V. Bianco, O. Manca, and S. Nardini, Entropy generation analysis of turbulent convection flow of Al2O3–water nanofluid in a circular tube subjected to constant wall heat flux. Energ. Convers. Manage., 77 (2014) 306-314.
[22] M. Mohseni, and M. Bazargan, Entropy generation in turbulent mixed convection heat transfer to highly variable property pipe flow of supercritical fluids. Energ. Convers. Manage., 87 (2014) 552-558.
[23] C. Chang, X. Li, and Q.Q. Zhang, Experimental and
Numerical Study of the Heat Transfer Characteristics in Solar Thermal Absorber Tubes with Circumferentially Non-uniform Heat Flux. Energ. Procedia., 49 (2014) 305-313.
[24] C. Marugán-Cruz, et al., Heat transfer and thermal stresses in a circular tube with a non-uniform heat flux. Int. J. Heat. Mass. Transfer., 96 (2016) 256-266.
[25] J. A. Esfahani, and P.B. Shahabi, Effect of non-uniform heating on entropy generation for the laminar developing pipe flow of a high Prandtl number fluid. Energ. Convers. Manage., 51 (2010) 2087-2097.
[26] N. Minocha, et al., 3D CFD simulations to study the effect of inclination of condenser tube on natural convection and thermal stratification in a passive decay heat removal system. Nucl. Eng. Des., 305 (2016) 582-603.
[27] P. V. Trevizoli, and J.R. Barbosa Jr, Entropy Generation Minimization analysis of oscillating-flow regenerators. Int. J. Heat. Mass. Transf., 87 (2015) 347-358.
[28] H. Feng, et al., Constructal entropy generation rate minimization for X-shaped vascular networks. Int. J. Therm. Sci.,92 (2015) 129-137.
[29] W. Shao, Z. Cui, and L. Cheng, Multi-objective optimization design of air distribution of grate cooler by entropy generation minimization and genetic algorithm. Appl. Therm. Eng., 108 (2016) 76-83.
[30] B. F. Pussoli, et al., Optimization of peripheral finned-tube evaporators using entropy generation minimization. Int. J. Heat. Mass. Transf., 55 (2012) 7838-7846.
[31] H. Ye, and K.-S. Lee, Refrigerant circuitry design of fin-and-tube condenser based on entropy generation minimization. Int. J. Refrig., 35 (2012) 1430-1438.
[32] G. C. Li, and S.-A. Yang, Entropy generation minimization of free convection film condensation on an elliptical cylinder. Int. J. Therm. Sci., 46 (2007) 407-412.
[33] A. Bejan, The Method of Entropy Generation Minimization, in Energy and the Environment, A. Bejan, P. Vadász, and D.G. Kröger, Editors. 1999, Springer Netherlands: Dordrecht. p. 11-22.
[34] T. H. Ko, Thermodynamic analysis of optimal mass flow rate for fully developed laminar forced convection in a helical coiled tube based on minimal entropy generation principle. Energ. Convers. Manage., 47 (2006) 3094-3104.
[35] B. K. Jha, and M.O. Oni, Natural convection flow in a vertical tube inspired by time-periodic heating. Alex. Eng. J., 55 (2016) 3145-3151.
[36] M. Farzaneh-Gord, H. Ameri, and A. Arabkoohsar, Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach. Appl. Therm. Eng.,108 (2016) 1279-1287.
[37] J. Abolfazli Esfahani, and M. Modirkhazeni, Entropy generation of forced convection film condensation on a horizontal elliptical tube. Comptes. Rendus. Mécanique., 340 (2012) 543-551.
[38] D. Huang, et al., A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress. Appl. Energ., 162 (2016) 494-505.
[39] N. S. Akbar, Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energ., 82 (2015) 23-30.
[40] T. Wang, Z. Huang, and G. Xi, Entropy generation for mixed convection in a square cavity containing a rotating circular cylinder using a local radial basis function method. Int. J. Heat. Mass. Transf., 106 (2017) 1063-1073.
[41] G. Zhang, et al., Entropy generation of supercritical water in a vertical tube with concentrated incident solar heat flux on one side. Int. J. Heat. Mass. Transf., 108 (2017) 172-180.
[42] S. M. Elsherbiny, M. A. Teamah, and A.R. Moussa,
Experimental mixed convection heat transfer from an isothermal horizontal square cylinder. Exp. Therm. Fluid. Sci., 82 (2017) 459-471.
[43] J. H. Heo, and B.-J. Chung, Influence of helical tube dimensions on open channel natural convection heat transfer. Int. J. Heat. Mass. Transf., 55 (2012) 2829-2834.
[44] H. T. Chen, et al., Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters. Int. J. Heat. Mass. Transf., 100 (2016) 320-331.
[45] J. C. Kurnia, et al., Numerical investigation of heat transfer and entropy generation of laminar flow in helical tubes with various cross sections. Appl. Therm. Eng., 102 (2016) 849-860.
[46] L. M. Jiji, Heat Convection, New York, 2006.
[47] F. P. Incropera, D. P. Dewitt, Introduction to Heat Transfer, fourth ed (2002).
[48] R. kakulvand, Effect of non-uniform temperature distribution on entropy generation and enthalpy for the laminar developing pipe flow of a high Prandtl number fluid. Chem. Rev. Lett., 2 (2019) 98-106.
[49] E. Babanehad, A. Beheshti, The Possibility of Selective Sensing of the Straight-Chain Alcohols (Including Methanol to n-Pentanol) Using the C20 Fullerene and C18NB Nano Cage, Chem. Rev. Lett., 1 (2018) 82-88.
[50] B. kakulvand, Review of drag coefficients on gas – liquid tower: the drag coefficient independent and dependent on bubble diameter in bubble column experiment, Chem. Rev. Lett., 2 (2019) 48-58.
[51] R. kakulvand, The effects of transient radiant flow on pipe in contact with natural convection, for developed laminar flow of fluid with high Prandtl number, on enthalpy and entropy generation, Chem. Rev. Lett., 2 (2019) 130-137.