Tuning of electronic and optical properties in ZnX (X=O, S, Se and Te) monolayer: Hybrid functional calculations

Document Type: Research Article

Authors

1 Department of Electrical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Department of Physics, College of Sciences, Yasouj University, Yasouj, Iran

Abstract

The structural, electronic and optical properties of graphene-like ZnX (X=O, S, Se and Te) are investigated in the framework of the density functional theory. Calculating strain energy exhibits that all compound has an asymmetric behavior with respect to applied biaxial strain. The electronic results indicate that the electronic properties of the considered layered compounds such as energy gap and gap direction can be tuned using exerting biaxial in-plane compressive and tensile strains. It has been shown that both compressive and tensile strains decrease the energy gap of ZnO monolayer. However, for the other compounds, ZnS, ZnSe and ZnTe, the energy gap increases by applying compressive strain while it decreases under tensile strains, respectively. The band gap direction changes by imposing different types strains. The optical results exhibit red shift and blue shift in the optical absorption spectrum for ZnO and ZnS monolayers by exerting tensile and compressive strains, respectively. Our obtained results suggest that these wide gap semiconductors can be good candidate for optoelectronic nano-base device.

Graphical Abstract

Tuning of electronic and optical properties in ZnX (X=O, S, Se and Te) monolayer: Hybrid functional calculations

Keywords


 
[1]     G.R. Bhimanapati et al. Recent Advances in Two-Dimensional Materials beyond Graphene, ACS Nano. 9 (12) (2015) 11509-11539.
[2]     Kh. Shehzad, Y. Xu, Ch. Gao, X. Duanb, Three-dimensional macrostructures of two-dimensional nanomaterials, Chem. Soc. Rev. 45 (2016) 5541-5588.
[3]     J.N. Tiwari, R.N. Tiwari, K.S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Prog. Mater. Sci. 57 (2012) 724- 803.
[4]     J. Wan, S.D. Lacey, J. Dai, W. Bao, M.S. Fuhrer, L. HuT , Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications, Chem. Soc. Rev. 45 (2016) 6742-6765.
[5]     K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666-669.
[6]     Y.-j. Liu, B. Gao, D. Xu, H.-m. Wang, J.-x. Zhao, Theoretical study on Si-doped hexagonal boron nitride (h-BN) sheet: Electronic, magnetic properties, and reactivity, Phys. Lett. A 378 (2014) 2989-2994.
[7]     M. Gao, M. Adachi, A. Lyalin, T. Taketsugu, Long Range Functionalization of h-BN Monolayer by Carbon Doping, J. Phys. Chem. C 120 (2016) 15993-16001.
[8]     A. A. Taherpour, O. Rezaei, Z. Shahri, J. Jalilian, M. Jamshidi, N. Zolfaghar, First principles studies of electronic and optical properties of helium adsorption on Sc-doped BN monolayer, J. Iran. Chem. Soc. 12 (2015) 1983-1990.
[9]     X. Su, R. Zhang, Ch. Guo, J. Zheng, Zh. Ren, Band engineering of dichalcogenide MX2 nanosheets (M= Mo, W and X= S, Se) by out-of plane pressure, Phys. Lett. A 378 (2014) 745-749.
[10] M. Safari, Z. Izadi, J. Jalilian, I. Ahmad, S. Jalali-Asadabadid, Metal mono-chalcogenides ZnX and CdX (X = S, Se and Te) monolayers: Chemical bond and optical interband transitions by first principles calculations, Phys. Lett. A 381 (2017) 663-670.
[11] F.A. Fernandez-Lima, A.V. Henkes, E.F. da Silveira, M.A. Chaer Nascimento, Alkali Halide Nanotubes: Structure and Stability, J. Phys.Chem. C 116 (2012) 4965-4969.
[12] M. Safari, P. Maskaneh, A.D. Moghadam, J. Jalilian, Lithium halide monolayers: Structural, electronic and optical properties by first principles study, Phys. E 83 (2016) 426 -433.
[13] H. Behera, G. Mukhopadhyay, Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure, Phys. Lett. A 376 (2012) 3287-3289.
[14] J. Jalilian, M. Safari, S. Naderizadeh, Buckling effects on electronic and optical properties of BeO monolayer: First principles study, Comp.Mater. Sci. 117 (2016) 120-126.
[15] Sh. Valedbagi, J. Jalilian, S.M. Elahi, S. Majidi, A. Fathalian, V. Dalouji, Ab initio calculations of electronic and optical properties of BeO nanosheet, Elec. Mat. Lett. 10 (2014) 5-11.
[16] A. Maity, A. Singh, P. Sen, A.a Kibey, A. Kshirsagar, D.G. Kanhere, Structural, electronic, mechanical, and transport properties of phosphorene nanoribbons: Negative differential resistance behavior, Phys. Rev.B 94 (2016) 075422.
[17] H. Khani, M. Esmaeilzadeh, F. Kanjouri, Controllable quantum valley pumping with high current in a silicene junction, Nanotechnology 27 (2016) 495202.
[18] Sh. Zhang, Zh. Yan, Y. Li, Zh. Chen, H. Zeng, Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect Direct Band Gap Transitions, Angew. Chem. Int. Ed. 54 (2015) 1-5.
[19] Sh.i Zhang, M. Xie, F. Li, Zh. Yan, Y. Li, E. Kan, W. Liu, Zh. Chen, H. Zeng, Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities, Angew. Chem. Int. Ed. 55 (2016) 1666-1669.
[20] M. Naseri, J. Jalilian, Electronic and optical investigations of Be2C monolayer: Under stress and strain conditions, Mater. Res. Bull. 88 (2017) 49-55.
[21] Sh. Zhang et al., Semiconductor-topological insulator transition of two-dimensional SbAs induced by biaxial tensile strain, Phys. Rev. B 93 (2016) 245303-7.
[22] Q. Peng, Ch. Liang, W. Ji, S. De, A first principles investigation of the mechanical properties of g-ZnO: The graphene-like hexagonal zinc oxide monolayer, Comp. Mater. Sci. 68 (2013) 320-324.
[23] Q. Peng et al., Mechanical properties and stabilities of g-ZnS monolayers, RSC. Adv. 5 (2015) 11240-11247.
[24] H. Behera, G. Mukhopadhyay, Tailoring the structural and electronic properties of a graphene-like ZnS monolayer using biaxial strain, J. Phys.D: Appl. Phys. 47 (2014) 075302.
[25] J. Jalilian, M. Safari, Tuning of the electronic and optical properties of single-layer boron nitride by strain and stress, Diamond. Rel. Mater. 66 (2016) 163-170.
[26] J. Jalilian, M. Naseri, Sh. Safari, M. Zarei, Tuning of the electronic and optical properties of single-layer indium nitride by strain and stress, Physica. E 83(2016) 372-377.
[27] J. Jalilian, M. Safari, Electronic and optical properties of beryllium sulfide monolayer: Under stress and strain conditions, Phys. Lett. A 380 (2016) 3546-3552.
[28] M. Naseri, J. Jalilian, Electronic and optical investigations of Be2C monolayer: Under stress and strain conditions, Mater. Res. Bull. 88 (2017) 49-55.
[29] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965) 1133-1138.
[30] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, K. Schwarz, An Augmented PlaneWave+Local Orbitals Program for Calculating Crystal Properties, revised edition, WIEN2k 13.1 (Release 06/26/2013), Wien2K Users Guide, ISBN 3-9501031-1 9501031-2.
[31] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
[32] J. Heyd, G.E. Scuseria, M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207.
[33] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1995) 5188.
[34] F. Birch, Finite strain isotherm and velocities for single crystal and poly crystalline NaCl at high pressures and 300 K, J. Geophys. Res. B 83 (1978) 1257-1268.
[35] Ch. Tana, D. Sun, D. Xu, X. Tian, Y. Huang, Tuning electronic structure and optical properties of ZnO monolayer by Cd doping, Ceramics.Inter. 42 (2016) 10997-11002.
[36] Ha. Behera, G. Mukhopadhyay, Strain-tunable band parameters of ZnO monolayer in graphene-like honeycomb structure, Phys. Lett. A 376 (2012) 3287-3289.
[37] R. Abt, C. Ambrosch-Draxl, P. Knoll, Optical response of high temperature superconductors by full potential LAPW band structure calculations, Phys. B: Condens. Matter 194196 (1994) 1451-1452.
[38] F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009) 226401.
[39] F. Wooten, Optical Properties of Solids, Academic Press, Inc., New York, London, 1972.
[40] J. Jalilian, M. Safari, Electronic and optical properties of beryllium sulfide monolayer: Under stress and strain conditions, Phys. Lett. A 380 (2016) 3546-3552.
[41] Sh. Tamleh, Gh. Rezaei, J. Jalilian, Stress and strain effects on the electronic structure and optical properties of ScN monolayer, Phys. Lett.A 382 (2018) 339-345.
[42] M. Naseri, Sh. Lin, J. Jalilian, J. Gu, Zh. Chen, Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction, Front. Phys. 13(3) (2018) 138102-9.