Study of the Ionization Potential, Electron Affinity and HOMO-LUMO Gaps in the Smal Fullerene Nanostructures

Document Type : Research Article

Authors

1 Department of Chemistry, Payame Noor University, P. O. Box: 19395-4697 Tehran, Iran

2 Young Researchers and Elite Club, Miyaneh Branch, Islamic Azad University, Miyaneh, Ir

3 Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, I

Abstract

In this work, the theoretical investigations on the buckyball systems including C20, C24, C26, C28, C30 and C19Si were done to study the structures and properties of different carbon nanoclusters. The geometries of all species were performed at the B3LYP and PBE1PBE levels using the 6-31+G (d) basis set. The HOMO–LUMO energy gap, ionization potential, electron affinity, chemical potential, electronegativity, global hardness and softness, electrophilicity and maximum amount of electronic charge of studied clusters were computed. The results showed that the computed electronic properties were considerable influenced by the size of different carbon nanoclusters. The Si atom doped instead of the carbon atom in C20 was investigated

Graphical Abstract

Study of the Ionization Potential, Electron Affinity and HOMO-LUMO Gaps in the Smal Fullerene Nanostructures

Keywords


[1] S. Bakshi, Z.L He, W.G. Harris, Natural nanoparticles: Implications for environment and human health. Crit. Rev. Env. Sci. Tec. 45 (2015) 861-904.
[2] T. Farrow, V. Vedral, Classification of macroscopic quantum effects. Opt. Commun. 337 (2015) 22-26.
[3] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F Curl, R.E. Smalley, C60: buckminsterf ullerene. Nature. 318 (1985) 162-163.
[4] B. Halford, Fullerene for the face. Chem. Eng. News.84 (2006) 47.
[5] A. Nel, T. Xia, L. Madler, N. Li, Toxic potential of materials at the nano level. Science. 311 (2006) 622-627.
[6] C.A. Scharlemann, Theoretical and experimental investigation of C 60-propellant for ion propulsion. Acta.Astronaut.51 (2002) 865-872.
[7] V.V. Pokropivny, V.V Skorokhod, G.S. Oleinik, Kurdyumov, et. al., Boron Nitride Analogs of fullerenes (the Fulborenes), Nanotubes, and Fullerites (the Fulborenites). J. Solid State Chem.154 (2000) 214-222.
[8] A.V. Pogulay, R.R. Abzalimov, S.K. Nasibullaev, A.S. Lobach, T. Drewello, Y.V. Vasilev, Ionization energies of the C60 fullerene and its hydrogenated derivatives C60 H18 and C60 H36 determined by electron ionization. Int. J. Mass Spectrom. 233 (2004) 165-172.
[9] G. Sanchez, S. Diaz-Tendero, M. Alcami, F. Martin, Size dependence of ionization potentials and dissociation energies for neutral and singly-charged Cn fullerenes (n = 40–70). Chem. Phys. Lett. 416 (2005) 14-17.           
[10] B. Brunetti, P. Candori, R. Ferramosche, S. Falcinelli, F. Vecchiocattivi, A. Sassara, M. Chergui, Penning ionization of C60 molecules. Chem. Phys. Lett. 294 (1998) 584-592.
[11] C. Brink, L.H. Andersen, P. Hvelplund, D. Mathur, J.D. Voldstad, Laser photodetachment of C60 and C70 ions cooled in a storage ring. Chem. Phys. Lett. 233 (1995)  52-56.
[12] D.L Lichtenberger, K.W. Nebesny, C.D Ray, D.R Huffman, L.D. Lamb, Valence and core photoelectron spectroscopy of C60, buckminsterfullerene. Chem. Phys. Lett. 176 (1991) 203-208.
[13] M.J. Frisch, et al. Gaussian 03, Revision B.05, Gaussian, Inc., Wallingford, CT. (2004).
[14] J. Leszczynski, I. Yanov, Possibility of the Existence of Non-Carbon Fullerenes:  Ab Initio HF and DFT/B3LYP Studies of the IV Main Group Fullerene-Like Species. J. Phys. Chem. A. 103 (1999) 396-401.
[15]  J. Leszczynski, A density functional theory study on the effect of shape and size on the ionization potential and electron affinity of different carbon nanostructures. Chem. Phys. Lett.  428: (2006)  317–320.
[16] W. An, Y. Gao, S. Bulusu, X.C. Zeng, Ab initio calculation of bowl, cage, and ring isomers of C20 and C20-. J. Chem. Phys. 122 (2005) 204109