Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor

Document Type: Research Article

Authors

1 Payame Noor University

2 Islamic Azad University

Abstract

In this study, the various properties including the stability energies, structural and electronic aspects of the hydrazine (N2H4), carbon monoxide (CO) water (H2O) and ammonia (NH3) molecules adsorptions on the top of the boron nitride nanoparticles (BNn) were studied through the Minnesota Functionals computations, DFT/M06-2X. The calculations clarifies that the most stable adsorption configurations are those in which the oxygen, carbon, oxygen and nitrogen atoms of CO2, CO, H2O and NH3 are closed to the boron atom of the nanoparticle, respectively. The absorption energies were obtained about -0.14, -0.15, -0.87 and -1.54 eV for abosorption of CO2, CO, H2O and NH3 gasses. The geometry optimizations, energy calculations and NBO charge transfer were used to evaluate the sensing ability of BNn for different analytes. The computed density of states (DOS) clarifies that a strong orbital hybridization take place between CO2, CO, H2O and NH3 and BNn in adsorption process. Finally, it is concluded that the BNn nanoparticle has greater response selectivity toward NH3 compared to CO, CO2 and H2O

Graphical Abstract

Applying the B12N12 nanoparticle as the CO, CO2, H2O and NH3 sensor

Keywords


[1] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, Comp. Mater. Sci. 54 (2012) 115–118.

[2] A. Ahmadi, N.L. Hadipour, M. Kamfiroozi, Z. Bagheri, Sensor Actuat. B-Chem. 161 (2012) 1025–1029.

[3] S. HaiJun, Comp. Mater. Sci. 47 (2009) 220–224.

[4] D. Golberg, Y. Bando, Appl. Phys. Lett. 73 (1998) 2441–2443.

[5] H. Omidvar, S. Goodarzi, A. Seif, A.R. Azadmehr, Superlattice. Microst. 50 (2011) 26–39.

[6] S.K. Jain, P. Srivastava, Comp. Mater. Sci. 50 (2011) 3038–3042.

[7] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, J. Mol. Model. 18 (2012) 2653-2658.

[8] G. Seifert, E. Hernandez, Chem. Phys.  Lett. 318 (2000) 355–360.

[9] H.S. Wu, F.Q. Zhang, X.H. Xu, C.J. Zhang, H. Jiao, J. Phys. Chem. A 107 (2003) 204–209.

[10] Y.R. Hacohen, E. Grunbaum, R. Tenne, J.L. Hutchison, Nature 395 (1998) 336–337.

[11] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, Science 267 (1995) 222–225.

[12] C. Balasubramanian, S. Belluci, P. Castrucci, M.D. Crescenzi, S.V. Bhoraskar, Chem. Phys. Lett. 383 (2004) 188–191.

[13] L. Bourgeois, Y. Bando, W.Q. Han, T. Sato, Phys. Rev. B 61 (2000) 7686–7691.

[14] D.A. Neumayer, J.G. Ekerdt, Chem. Mater. 8 (1996) 9–25.

[15] W.H. Goh, G. Patriarche, P.L. Bonanno, S. Gautier, T. Moudakir, M. Abid, G. Orsal, A.A. Sirenko, Z.H. Cai, A. Martinez, A. Ramdane, L. Le Gratiet, D. Troadec, A. Soltani, A. Ougazzaden, J. Cryst. Growth 315 (2011) 160–163.

[16] E. Silva Pinto, R. de Paiva, L.C. de Carvalho, H.W.L. Alves, J.L.A. Alves, Microelectr. J. 34 (2003) 721–724.

[17]  N.G.Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl, Science, 269 (1995) 966.

[18] I. Narita, T. Oku, Diamond Relat. Mater., 12 (2003) 1146.

[19] S. Iijima, C. J. Brabec, A.Maiti, J. Bernholc, J. Chem. Phys., 104 (1996) 2089.

[20] D. Golberg, Y. Bando, O. Stephan, K. Kurashima, Appl. Phys. Lett., 73 (1998) 2441.

[21] D. Golberg, Y. Bando, K. Kurashima, T. Sato, Scr. Mater., 44 (2001) 1561.

[22] D. B. Zhang, E. Akatyeva, T. Dumitrica, Phys, Rev., B 84 (2011) 115431.

[23] T. Oku, A. Nishiwaki, I. Narita, M. Gonda, Chem. Phys. Lett. 380 (2003)620.

[24] M. Neek-Amal, J. Beheshtian, A. Sadeghi, K. Michel, F.M. Peeters,  J. Phys. Chem. C. 117 (2013) 13261–13267.

[25] D. Kohl, J. Phys. D34 (2001) R125–R149.

[26] A. Dubbe, Sens. Actuators B 88 (2003) 138 – 148.

[27] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Nature 424 (2003) 171–174.

[28] H. Ullah, K. Ayub, Z. Ullah, M. Hanif, R. Nawaz, A.A. Shah, S. Bilal, Synth. Met. 172 (2013) 14–20.

[29] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V. G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Gaussian Inc., Wallingford, CT, (2009).

[30] S. Kozuch, J.M.L. Martin, J. Chem. Theory Comput. 9 (2013) 1918.

[31] M.D. Esrafili, R. Nurazar, Comput. Mater. Sci. 92 (2014) 172.

[32] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14 (1993) 1347–1363.

[33] F. Weinhold, C.R. Landis, Discovering Chemistry With Natural Bond Orbitals, John Wiley & Sons, (2012).

[34] Z. Jin, Y. Su, Y. Duan, Sens. Actuators B. 72 (2001) 75–79.

[35] N. O’Boyle, A. Tenderholt and K. Langner, cclib: A library for package independent  computational  chemistry  algorithms. J. Comput. Chem. 29 (2008) 839–845.

[36] Javad Beheshtian, Zargham Bagheri, Mohammad Kamfiroozi, Ali Ahmadi, Microelectr. J. 42 (2011) 1400–1403.

[37] Bulat FA, Toro-Labbe A, Brinck T, Murray JS, Politzer P Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16 (2010) 1679–1691.

[38] S.S.  Li, Semiconductor physical electronics, 2nd edn. Springer, Heidelberg (2006).