The Be atom doping: An effective way to improve the Li-atom adsorption in boron rich nanoflake of B24

Document Type : Research Article

Authors

1 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2 Department of Science, Payame Noor University, P. O. Box: 19395-4697 Tehran, Iran

Abstract

Based on the density functional techniques, we have carried out the doping Be atom to the B24 molecule, nBe@B24 (n = 1 and 2), which follows through addition of the Li atom to the most stable nBe@B24 (n = 1 and 2) molecules. The calculated results show that the doping Be atom causes to the severe deformation of the B24 molecule along with big values of vertical ionization energy for the nBe@B24 (n = 1 and 2) molecules. Moreover, the range -2.65 eV ~ -4.49 eV for the adsorption energy per Be atom confirms unique thermodynamic stability of the nBe@B24 (n = 1 and 2) molecules. Note that the dominant thermodynamic and chemical stability among all the nBe@B24 (n = 1 and 2) molecules belongs to the cage configuration of the B24 molecule. The positive charges of the Be atoms, 0.60 e ~ 0.97 e, the lack of the Be-Be interaction and high chemical flexibility of the B atoms have been observed in the nBe@B24 (n = 1 and 2) molecules based on the natural bond orbital (NBO) and the atoms in molecules (AIM) analysis. The value of first hyperpolarizability, βtotal,in the nBe@B24 (n = 1 and 2) molecules depends severely on both the number of the Be atoms and the backbone configuration. Moreover, addition of Li atom presents the existence of the Be atom(s) increases the adsorption energy of the Li atom in the B24 molecule

Graphical Abstract

The Be atom doping: An effective way to improve the Li-atom adsorption in boron rich nanoflake of B24

Keywords


 
 
[1] I. Torkpoor, M. Heidari Nezhad Janjanpour, N. Salehi, F. Gharibzadeh, L. Edjlali, Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study, Chem. Rev. Lett., 1 (2018) 2-8.
[2a] Q.S. Li, Y. Zhao, W. Xu, N. Li, Structure and stability of B8 clusters, Int. J. Quant. Chem. 101 (2005) 219-229;
[2b] M.L. Drummond, V. Meunier, B.G. Sumpter, Structure and stability of small boron and boron oxide clusters, J. Phys. Chem. A, 111 (2007) 6539-6551.
[3] J.I. Aihara, H. Kanno, T. Ishida, Aromaticity of planar boron clusters confirmed, J. Am. Chem. Soc. 127 (2005) 13324-13330.
[4] B. Kiran, G. Gopakuma, M.T. Nguyen, A.K. Kandalam, P. Jena, Origin of the unusual stability of B12 and B13+ clusters, Inorg. Chem. 48 (2009) 9965-9967.
[5] H.J. Zhai, L.S. Wang, D.Y. Zubarev, A.I. Boldyrev, Gold Apes Hydrogen. The Structure and Bonding in the Planar B7Au2- and B7Au2 Clusters, J. Phys. Chem. A, 110 (2006) 1689-1693.
[6] T.B. Tai, P.V. Nhat, M.T. Nguyen, Sh. Li, D.A. Dixon, Electronic structure and thermochemical properties of small neutral and cationic lithium clusters and boron-doped lithium clusters: Lin0/+ and LinB0/+ (n = 1–8), J. Phys. Chem. A, 115 (2011) 7673–7686.
[7] MT Nguyen, MH Matus, VT Ngan, DJ Grant, DA Dixon, Thermochemistry and electronic structure of small boron and boron oxide clusters and their anions, J. Phys. Chem. A, 113 (2009) 4895-4909.
[8] C.P. Talley, L.E. Line, Q.D. Overman, in boron, synthesis, structure and properties, edited by Kohn JA, Nye WF, Gaule´Plenum GK, New York, (1960).
[9] F.E. Wawner, in modern composite materials, edited by L.J. Broutman, R.H. Krock, Addison-Wesley, Reading MA, (1967).
[10] E. Weintraub, Preparation and properties of pure boron, Trans. Am. Electrochem. Soc. 16 (1909) 165–184.
[11] A.N. Alexandrova, A.I. Boldyrev, H.J. Zhai, L.S. Wang, All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry, Coord. Chem. Rev. 250 (2006) 2811-2866.
[12] T.B. Tai, D.J. Grant, M.T. Nguyen, D.A. Dixon, Thermochemistry and electronic structure of small boron clusters (Bnn= 5−13) and their anions, J. Phys. Chem. A, 114 (2010) 994-1007.
[13] T.B. Tai, M.T. Nguyen, D.A. Dixon, Thermochemical properties and electronic structure of boron oxides BnOm (n = 5−10, m = 1−2) and their anions, J. Phys. Chem. A, 114 (2010) 2893-2912.
[14] B. Kiran, S. Bulusu, H-J. Zhai, S. Yoo, X.C. Zeng, L-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes, Proc. Natl. Aca. Sci. 102 (2005) 961-964.
[15] I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n = 2 – 14), Phys. Rev. B, 55 (1997) 16426-16438.
[16] I. Boustani, A. Quandt, Nanotubules of bare boron clusters: Ab initio and density functional study, Europhys. Lett. 39 (1997) 527-532.
[17] J. Bai, X.C. Zeng, H. Tanaka, J.Y. Zeng, Metallic single-walled silicon nanotubes, Proc. Natl. Acad. Sci. 101 (2004) 2664-2668.
[18] I. Boustani, New quasi-planar surfaces of bare boron, Surf. Sci. 370 (1997) 355-363.
[19] O. Mishima, J. Tanaka, S. Yamaoka, O. Fukunaga,, High-temperature cubic boron nitride P-N junction diode made at high pressure, Science, 238 (1987) 181-183.
[20] A. Demirbas, Hydrogen, boron as recent alternative motor fuels, Energy Sources, 27 (2005) 741-748.
[21] Q.S. Li, H.W. Jin, Structure and stability of B5, B5+, and B5- clusters, J. Phys. Chem. A, 106 (2002) 7042-7047.
[22] H-J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, L-S. Wang, Hepta- and Octacoordinate Boron in Molecular Wheels of Eight- and Nine-Atom Boron Clusters: Observation and Confirmation, Angew. Chem. Int. Ed. 42 (2003) 6004-6008.
[23] B. Kiran, S. Bulusu, H-J. Zhai, S. Yoo, X.C. Zeng, L-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes, Proc. Natl. Acad. Sci. 102 (2005) 961-964.
[24] M.A.L. Marques, S. Botti, The planar-to-tubular structural transition in boron clusters from optical absorption, J. Chem. Phys. 123 (2005) 014310-014314.
[25] S. Chacko, D.G. Kanhere, I. Boustani, Ab initio density functional investigation of B24 clusters: Rings, tubes, planes, and cages, Phys. Rev. B, 68 (2003) 035414-035424.
[26] H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets, Phys. Rev. Lett. 99 (2007) 115501-115504.
[27] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868.
[28] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78 (1997) 1396-1396.
[29] C. Adamo, V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110 (1999) 6158-6170.
[30] R.A. Kendall, T.H. Dunning, R.J. Harrison, Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys. 96 (1992) 6796-6806.
[31] Z.A. Piazza1, H-S. Hu, W-L. Li, Y-F. Zhao, J. Li, L-S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nature Commun, 5 (2014) 3113-3118.
[32] C. Romanescu, T.R. Galeev, W-L. Li, A.I. Boldyrev, L-S. Wang, Aromatic Metal-Centered Monocyclic Boron Rings: Co@B8- and Ru@B9-, Angew. Chem. Int. Ed. 50 (2011) 9334-9337.
[33] C. Romanescu, T.R. Galeev, A.P. Sergeeva, W-L. Li, L-S. Wang, A.I. Boldyrev, Experimental and computational evidence of octa- and nona-coordinated planar iron-doped boron clusters: Fe@B8- and Fe@B9-, J. Org. Chem.721-722 (2012) 148-154.
[34] Z.A. Piazza, W-L. Li, C. Romanescu, A.P. Sergeeva, L-S. Wang et al., A photoelectron spectroscopy and ab initio study of B21: Negatively charged boron clusters continue to be planar at 21, J. Chem. Phys. 136 (2012) 104310-104319.
[35] I.A. Popov, Z.A. Piazza, W-L. Li, L-S. Wang, A.I. Boldyrev, A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24- Cluster, J. Chem. Phys. 139 (2013) 144307-144314.
[36] A.P. Sergeeva, Z.A. Piazza, C. Romanescu, W-L. Li, A.I. Boldyrev, L-S. Wang, B22- and B23-: All-Boron Analogues of Anthracene and Phenanthrene, J. Am. Chem. Soc. 134 (2012) 18065-18073.
[37] S. Grimm, J. Antony, S. Ehrlich, S. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys. 132 (2010) 154104-154122.
[38] T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer, J. Comput. Chem. 33 (2012) 580-592.
[39] AD Becke, A new mixing of Hartree-Fock and local density‐functional theories, J. Chem. Phys. 98 (1993) 1372-1377.
[40] B. Champagne, E.A. Perpet`e, D. Jacquenmin, S.J.A. van Gisbergen, E-J. Baerends, C. Soubra-Ghaoui, K.A. Robins, B. Kirtman, Assessment of conventional density functional schemes for computing the dipole moment and (Hyper) polarizabilities of push−pull π-conjugated systems, J. Phys. Chem. A, 104 (2000) 4755-4763.
[41] B. Champagne, E. Botek, M. Nakano, T. Nitta, K. Yamaguchi, Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell π-conjugated systems, J. Chem. Phys. 122 (2005) 114315-114326.
[42] M. Nakano, R. Kishi, T. Nitta, T. Kubo, K. Nakasuji, K. Kamada, K. Ohta, B. Champagne, E. Botek, K. Yamaguchi, Second hyperpolarizability (γ) of singlet diradical system:  dependence of γ on the diradical character, J. Phys. Chem. A 109 (2005) 885-891.
[43] M.J. Frisch, et al. Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT, (2009).
[44] R.F.W. Bader, In: Halpen J. Green M.L.H. (Eds) The international series of monographs of chemistry, Clarendon Press, Oxford, (1990).
[45] C.R. Landis, F. Weinhold, The Chemical bond. 1. fundamental aspects of chemical bonding, Frenking G, Shaik S (Eds), Wiley-VCH, Weinheim, (2014).
[46] C.R. Landis, F. Weinhold, Valency and bonding: A natural bond orbital donor-acceptor perspective. Cambridge University Press, Cambridge, (2005).
[47] A.E. Reed, L.A. Curtiss, F. Weinhold, Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev. 88 (1988) 899-926.
[48] O. Brea, O. Mó, M. Yáñez, I. Alkorta, J. Elguero, On the existence of intramolecular one-electron Be-Be bonds, Chem. Commun. 52 (2016) 9656-9659.
[49] Z. Cui, W. Yang, L. Zhao, Y. Ding, G. Frenking, Unusually Short Be-Be distances with and without a bond in Be2F2 and in the molecular discuses Be2B8 and Be2B7-, Angew. Chem.128 (2016) 7972–7977.
[50] V. Postils, M. Garcia-Borrás, M. Solá, J.M. Luis, E. Matito, On the existence and characterization of molecular electrides, Chem. Commun. 51 (2015) 4865-4868.