Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene

Document Type : Research Article

Authors

1 Department of Chemistry, Tofigh Daru Research and Engineering Pharmaceutical Company, Tehran, Ir

2 Department of Chemistry, Payambar-e-Azam Educational Complex, Islamic Azad University, Tehran, Ira

Abstract

NANO MACHINES which are of the capital aims of many advancedresearch projects would contain of complex systems of different devices and actuators that each of them plays a pre-defined role in the overall unit. Nano sensors, nano batteries, nano engines, and nano switches, which contain the most interesting devices for researchers in the related field, are being under consideration for the advance research projects of nano technology. Therefore, in the present project, we have made attempts to reveal the switching behavior of the benzene-C20 fullerene system via a 1,5-sigmatropic shift of the germanium, and silicon-decorated C20 fullerene carbon atoms on the benzene ring.
The results showed that in the case of the silicon-decorated C20 fullerene, changingthe system from state A to state Bvia changing the temperature(24.7 kcal mol-1) is much easier than that of germanium-decorated (27.5 kcal mol-1) or normal C20 fullerene (37.8 kcal mol-1). It seems that further studies on this phenomenon, might be beneficial for designing the thermal sensor systems, and energy storage devices

Graphical Abstract

Switching behavior of an actuator containing germanium, silicon-decorated and normal C20 fullerene

Keywords


[1] E.A. Ilardi, C.E.Stivala, A. Zakarian, [3, 3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products. Chem. Soc. Rev. 38 (2009)3133-3148.
[2] A. Hoffmann‐Röder, N. Krause, Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. Engl. 43 (2004)1196-1216.
[3] R.E. Bulo, A.W. Ehlers, S. Grimme, K. Lammertsma,Vinylphosphirane-phospholene rearrangements: Pericyclic [1, 3]-sigmatropic shifts or not?.J. Am. Chem. Soc. 124 (2002)13903-13910.
[4] Y.Yang, Regio‐and Stereospecific 1, 3‐Allyl Group Transfer Triggered by a Copper‐Catalyzed Borylation/ortho‐Cyanation Cascade.Angew. Chem. 128 (2016)353-357.
[5] P. Geerlings, P.W. Ayers, A. Toro-Labbé, P.K.Chattaraj, F. De Proft, The Woodward–Hoffmann rules reinterpreted by conceptual density functional theory. Acc. Chem. Res. 45 (2012)683-695.
[6] O.N. Faza, C.S. López, R.Álvarez, A.R. de Lera,Solvolytic ring-opening reactions of cyclopropyl bromides. An assessment of the Woodward-Hoffmann-Depuy rule.J. Org. Chem. 69 (2004)9002-9010.
[7] K.N. Houk, Frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 8 (1975) 361-369.
[8] P.W. Ayers, C. Morell, F. De Proft, P. Geerlings, Understanding the Woodward–Hoffmann rules by using changes in electron density. Chem.Eur.J. 13 (2007)8240-8247.
[9] R. Herges, Topology in chemistry: designing Möbius molecules. Chem. Rev. 106 (2006)4820-4842.
[10] B. Miller,Advanced Organic Chemistry. 2nd Ed. Upper Saddle River: Pearson Prentice Hall. 2004,ISBN 0-13-065588-0.
[12] D.J. Field, D.W. Jones, G. Kneen, 1, 5-Shift of unsaturated groups. Chem. Commun. 21 (1976)873-874.
[13] a) A. Shokuhi Rad,  Kh.Ayub, Adsorption of pyrrole on Al12N12, Al12P12, B12N12, and B12P12 fullerene-like nano-cages; a first principles study. Vacuum 131 (2016) 135-141; b) A.S. Siadati, M.S. Amini-Fazl, E. Babanezhad , The possibility of sensing and inactivating the hazardous air pollutant species via adsorption and their [2+ 3] cycloaddition reactions with C20 fullerene. Sens.Actuat. B-Chem 237 (2016) 591-596; c) S.A. Siadati, N. Nami, Investigation of the possibility of functionalization of C20 fullerene by benzene via Diels–Alder reaction. Physica E: Low-dimen Sys Nanostruc84 (2016) 55-59;
[14]S.A. Siadati, E. Vessally, A.Hosseinian, L. Edjlali, Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Synth.Met.220 (2016) 606–611.
[15]E. Vessally, S. A. Siadati, A. Hosseinian, L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20fullerene and graphene segment, Talanta 162 (2017) 505-510.
[16] Y. Wu, W. Zhu, Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 42 (2013)2039-2058.
[17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J. M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V.Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D.Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul,B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L.Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C.Gonzalez, M. Challa- combe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 03 Inc., Pittsburgh, 2003.
[18] A.D. Becke, Completely numerical calculations on diatomic molecules in the local-density approximation, Phys. Rev. A 38 (1988) 3098-30100.
[19] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 371 (1988) 785-789.
[20] V. B. Delchev, M. V. Nenkova, Theoretical modeling of the ground state intramolecular proton transfer in cytosine: DFT level study, Acta. Chim.Slov.55 (2008) 132-137.
[21] C. Peng, P.Y. Ayala, H.B. Schlegel, M.J. Frisch, Open-shell systems and the total energies of the first-row atoms, J. Comput. Chem. 17 (1996) 49-56.
[22] C. Peng, H.B. Schlegel, Combining synchronous transit and quasi-newton methods to find transition states,Isr. J. Chem.33 (1996) 449-454.
[23] C. Gonzalez, H.B. Schlegel, An improved algorithm for reaction path following, J. Chem. Phys. 90 (1989) 2154-2162.
[24] C. Gonzalez, H.B. Schlegel, Reaction Path Following in Mass-Weighted Internal Coordinates, J. Physical Chem. 94 (1990) 5523-5527.
[25] A.E. Reed, L.A. Curtiss, F. Weinhold, Inter molecular Interactions from a Natural Bond Orbital, Donor- Acceptor Viewpoint, Chem. Rev.88 (1988) 899-926.
[26] J.E. Carpenter, F.J. Weinhold, Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure, J. Mol. Struct. (Theochem) 169 (1988) 41-62.
[27] L. Pauling, Atomic Radii and Interatomic Distances in Metals.J. Am. Chem. Soc. 69 (1947) 542-545.
[28] A. Moyano, M.A.Pericas, E.A. Valenti, theoretical study on the mechanism of the thermal and the acid-catalyzed decarboxylation of 2-oxetanones (.beta.-lactones). J. Org. Chem. 54 (1989) 573-582.
[29] B.Lecea, A.Arrieta, G.Roa, J.M.Ugalde, F.P. Cossıo, Catalytic and Solvent Effects on the Cycloaddition Reaction between Ketenes and Carbonyl Compounds To Form 2-Oxetanones. J. Am. Chem. Soc. 116 (1994) 9613-9619.
[30] M.J.S. Dewar, Multibond reactions cannot normally be synchronous. J. Am. Chem. Soc. 106 (1984) 209-219.
[31] W.T.Borden, R.J. Loncharich, K.N. Houk, Synchronicity in Multibond Reactions. Annu.ReV. Phys. Chem. 39 (1988) 213-236.
[32] a) R. Jasiński, In the searching for zwitterionic intermediates on reaction paths of [3+2] cycloaddition reactions between 2, 2, 4, 4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv. (2015) 101045-101048; b)R. Jasiński, A stepwise, zwitterionic mechanism for the 1, 3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethenecatalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 56(2015) 532-535.
[33] L.R. Domingo, A New C-C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv.4 (2014) 32415-32428