A review on the CO₂ Incorporation Reactions Using Arynes

Maryam Daghagheleh a, Mehdi Vali a, Zahra Rahmani b, Shahriar Sarhandi a, Esmail Vessally a, *

a Department of Chemistry, Payame Noor University, P. O. Box: 19395-4697 Tehran, Iran
b Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran

ABSTRACT

Arynes are highly reactive and kinetically unstable intermediates, which have been extensively utilized in various carbon-carbon and carbon-heteroatom bond formation reactions. Multi-component couplings of these intermediates are powerful transformations that allow for efficient synthesis of a wide range of carbocycles and heterocycles, as well as natural products. On the other hand, CO₂-fixation reactions are one of the safest and most inexpensive methods for the synthesis of various value-added chemicals. Along this line, recently, several elegant multi-component reactions involving arynes were designed for the incorporation of CO₂. This review provides a comprehensive overview of the CO₂ incorporation reactions using arynes, with the emphasis on the mechanistic aspects of the reactions.

1. Introduction

The conversion of carbon dioxide (CO₂) as an abundant, safe, inexpensive, nontoxic, nonflammable, and renewable C₁ synthon into value-added chemicals, such as carbonates, carbamates, esters, carboxylic acids and alcohols represents one of the hot topics in the fields of green and sustainable chemistry [1-10]. However, due to the inert nature of this greenhouse gas, the chemical fixation process with high efficiency is still a great challenge [11].

Arynes (benzynes) are highly strained, unstable, and reactive intermediates, which have been extensively utilized to the synthesis of a large number of valuable carbocyclic and heterocyclic compounds [12-16]. Over the past few years, this concept was further expanded by developing new multi-component reactions involving arynes [17]. Generally, arynes multi-component couplings involves the initial addition of nucleophiles to in situ generated arynes and subsequent trapping of the aryliodonium intermediate with electrophiles (Scheme 1). Needless to say, the carbon atom of carbon dioxide is highly electrophilic due to the attached electronegative oxygen atoms and can undergo electrophilic attack by various nucleophiles [18]. According to the above sentences, CO₂ could be utilized as a versatile electrophilic coupling partner in the multi-component reactions involving arynes.

Recently, several elegant multi-component coupling reactions involving arynes were designed that allow the incorporation of CO₂ to produce various multifunctionalized arenes and heteroarenes such as benzoxazin-4-ones, anthranilic acids, isocoumarins, phthalimides, 2-arylamino benzoates, 2-aminooaryl benzoates, and carbamates (Figure 1). To the best of our knowledge, a comprehensive review has not appeared on CO₂ incorporation reactions using arynes in literature thus far. In continuation of our recent reviews [11, 19-29], herein we will try to provide a concise overview of the recent advances and developments in this field with special emphasis on the mechanistic aspects of the reactions.

Scheme 1. Three-component coupling reactions involving arynes.

* Corresponding author. Tel.: +98-9122257098; e-mail: vessally@yahoo.com
2. Three-component reactions

The possibility of CO$_2$ incorporation reaction using arynes was first realized by Yoshida, Kunai and co-workers, who synthesized a series of highly substituted benzoxazin-4-ones 3 through a metal-free three-component reaction between 2-(trimethylsilyl)aryl triflates 1, imines 2, and CO$_2$ in the presence of 4 equiv. of KF/18-crown-6 in THF at 0 °C [30]. The presence of KF as a fluoride ion source is crucial to the success of the reaction, owing to the generation of required arynes by the fluoride induced 1,2-elimination of starting 2-(trimethylsilyl)aryl triflates under mild reaction conditions [31]. Under the optimal conditions, the desired six-membered heterocycles were obtained in fair to high yields (Scheme 2a). This three-component coupling reaction tolerated a range of substituents on the arynes and was efficient for the use of different primary and secondary alkyl imines. However, tertiary alkyl imines and aryl imines failed to afford the expected products. According to the authors proposed mechanism, the reaction proceeds with nucleophilic addition of an imine 2 to in situ generated arylene A leading to a zwitterion intermediate B, which undergoes nucleophilic addition to CO$_2$ followed by intramolecular cyclization to give the target product 3 (Scheme 2b). The results showed that electronic and steric effects of the substituents on the arynes greatly affected the regioselectivity of reactions. For example, 3-methoxybenzyne, underwent nucleophilic attack by the imine at the meta position of the methoxy moiety to afford the 5-methoxybenzoxazin-4-one, exclusively. However, in the case of 3-methyl-benzyne, the steric effect would be in conflict with an electron-donating inductive effect of the methyl moiety, leading to the production of a mixture of two possible products (Scheme 3).

![Fig. 1 CO2 incorporation reactions using arynes.](image-url)
Subsequently, intramolecular addition of aryl anion of C to carbonyl group affords intermediate D. Next, rearrangement of this intermediate leads to the phenoxy intermediate E. Finally, intramolecular nucleophilic aromatic substitution of E gives the final product.

Scheme 5. Reaction of o-chlorophenyltrimethylsilane 7 with CO₂ in the presence of P₂Cl/CsF combination as a catalytic system.

Inspired by these works, the group of Kobayashi presented one of the most striking examples of the synthesis of isocoumarins 11 via a copper-catalyzed three-component coupling reaction involving 2-(trimethylsilyl)aryl triflates 9, terminal alkynes 10, and carbon dioxide (Scheme 7) [34]. Various copper catalysts, bases, and solvents were carefully tested in order to optimize the reaction conditions and the combination of [(IPr)CuCl]/Cs₂CO₃/CsF as a catalytic system in binary solvent MeCN/THF with ratio 1:1.
proved most effective. Various aryl/heteroaryl/vinyl/alkyl-substituted terminal alkynes and functionalized 2-(trimethylsilyl)aryl triflates were used to establish the general applicability of the method. Under optimized conditions, the corresponding isocoumarins were obtained in moderate to high yields. A gram-scale reaction was also successfully reported. However, when unsymmetrical aryne precursors were used, a mixture of two possible products were obtained demonstrating poor regioselectivity of the reaction. The authors proposed a mechanism in accordance with previous reports and their findings and this is represented in Scheme 8. The reaction starts with the deprotonation of terminal alkyne 10 by NHC–copper hydroxide, leading to the formation of copper acetylide A. Concurrently, the fluoride-induced silyl elimination of 2-(trimethylsilyl)aryl triflate 9 yields ortho-benzyne B. Its reaction with organometallic A forms the ortho-alkynyl copper complex C. Next, the nucleophilic attack of this intermediate to the carbon atom in CO₂ leads to copper carboxylate D, which undergoes a 6-endo-dig cyclization to form endocyclic copper heterocycle E. Finally, transmetalation between intermediate E and the cesium salt affords intermediate F that under the reaction condition converts to the expected product 11.

Scheme 7. NHC–Cu-catalyzed three-component couplings of arynes 9, terminal alkynes 10, and CO₂.

In 2014, Kaicharla, Thangaraj, and Biju showed that phthalimide derivatives 14 were formed via three-component reactions of 2-(trimethylsilyl)aryl triflates 12, isocyanides 13, and CO₂ employing CsF as a F⁻ source under transition-metal-free condition at 30 °C [35]. This methodology resulted in N-substituted phthalimides in moderate to good yields and tolerated a series of sensitive functional groups, such as fluoro and ether functionalities (Scheme 9). Interestingly, when CO₂ was replaced with H₂O, the corresponding benzamide derivatives 15 were obtained in yields ranging from 26 to 92%. The author proposed mechanistic course for these reactions is depicted in Scheme 10 and involves the initial formation of 1,3-zwitterionic intermediate B via the nucleophilic attack of the isocyanide 13 on the in situ generated aryne A, which undergoes a [3+2] cycloaddition with CO₂ to produce imino isobenzofuran C. Finally, a fluoride induced rearrangement of this intermediate leads to the observed phthalimide 14 through the acyl fluoride intermediate D. However, in the presence of H₂O, the intermediate B gets protonated and the hydroxyl anion attacks the iminium leading to imine intermediate E that after a 1,3 hydrogen shift affords the benzamide product 15.

In a closely related investigation, the group of Wang-Ji found that treatment of functionalized 2-(trimethylsilyl)aryl triflates 16 with aromatic isocyanides 17 under the CO₂ atmosphere (1 atm) in the presence of 1.5 equiv. of KF/18-crown-6 in THF produced the corresponding phthalimides 18 in moderate yields (Scheme 11) [36]. In this study, the authors found some limitations in their methodology when they attempted to react aliphatic isocyanides. In these cases, no phthalimide product was observed. In addition, aromatic isocyanides a strongly electron-withdrawing substituent (e.g., NO₂) also failed to form the desired product.

Recently, Biju and co-workers developed an elegant and efficient substrate-controlled switchable three-component reaction involving arynes, aromatic tertiary amines, and CO₂ [37]. This transition-metal-free coupling afforded 2-arylamino benzoates 21 in moderate to almost quantitative yields via the treatment of 2-(trimethylsilyl)aryl triflates 19 with electron-rich/-neutral aromatic tertiary amines 20 under CO₂ atmosphere employing KF/18-crown-6 combination as a desilylation system. The reaction showed good functional group tolerance, including fluoro, bromo, ether and ester functionalities. This made possible the further elaboration of products. Interestingly, when the same reaction conditions were applied to the electron-deficient amines, the 2-arynamino benzoate products 22 were exclusively obtained (Scheme 12). The mechanistic course of this interesting reaction sequence is shown in Scheme 13, and involves the initial formation of 1,3-zwitterionic intermediate B from the addition of aromatic tertiary amines to arynes A. The reaction of this intermediate with CO₂ gives the key intermediate C, which with electron-rich/-neutral amines, undergoes an alkyl group transfer to produce 2-arylamino benzoates 21. However, in the case of tertiary amines having an electron-poor group attached, the intermediate C undergoes an intramolecular nucleophilic aromatic substitution reaction to yield the expected 2-arynamino benzoates 22 via the σ-complex D.
3. Four-component reactions

An interesting metal- and fluoride-free four-component coupling reaction for the synthesis of biologically and synthetically important carbamate derivatives 26 from 3-triflyloxybenzynes 23, amines 24, cyclic ethers 25 and CO$_2$ in which one new C–N bond, one new C–H bond and two C–O bonds are formed, was developed by Xiong et al. in 2018 (Scheme 14) [38].
which undergoes protonation by the ammonium cation of carbamate C, which is generated in situ from amine 24 and CO$_2$, to produce oxonium intermediate D. Finally, the nucleophilic attack of the carbamate anion on intermediate D affords the observed products 26. To the best of our knowledge, this is the only example of four-component reactions involving arenes and CO$_2$ reported so far.

Scheme 12. Transition-metal-free three-component coupling of arynes, aromatic tertiary amines, and CO$_2$ developed by Biju.

Scheme 13. Mechanistic proposal for the reaction in Scheme 12.

<table>
<thead>
<tr>
<th>R$_1$</th>
<th>R$_2$</th>
<th>R$_3$</th>
<th>R$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>Me</td>
<td>Et</td>
</tr>
<tr>
<td>4,5-Me$_2$</td>
<td>4,5-F$_2$</td>
<td>4,5-OCH$_2$O</td>
<td>4,5-(CH)$_4$, 3,4-(CH)$_4$</td>
</tr>
</tbody>
</table>

20 examples (56-97%) (average yield: 80%)

R2 = electron-rich/neutral groups
R3 = Me, Et, Bn
R4 = Me, Et

11 examples (58-75%) (average yield: 62.5%)

R2 = electron-poor groups
R3 = R4 = Me

n = 0, 1
R1 = H, 4-Me, 4-Et, 5-Me, 5-Ph
R2 = H, Me, Et, tPr
R3 = Me, Et, tPr, tPent, tPent, Bn, CH(Me)(Ph)
R2 + R3 = (CH)$_2$, (CH)$_3$
4. Conclusions

The efficient utilization of CO$_2$ as an abundant, inexpensive, nontoxic, nonflammable, and renewable C1-building block in organic synthesis has attracted significant attention in view of sustainable chemistry and green chemistry concepts. However, this is a great challenge, owing to its inert nature and low reactivity. Arynes are a kind of highly unstable and reactive intermediates, which have been widely used in various carbon-carbon formation and carbon-heteroatom bond formation reactions. As illustrated, over the last 12 years, several interesting multi-component coupling reactions involving arynes were designed that allow the efficient incorporation of CO$_2$ to produce various value-added chemicals (e.g. benzoxazin-4-ones, antranilic acids, isocoumarins, phthalimides, 2-arylamino benzoates, 2-aminoaryl benzoates, and carbamates). Interestingly almost all of the conversion of CO$_2$ covered in this focus-review could be achieved under very mild (atmospheric pressure of CO$_2$ and room temperature) and metal-free conditions demonstrating the greener feature of the present protocol. However, the number of reported examples in this interesting research arena is limited and there is still further need to study the scope and limitations of this novel protocol for the synthesis of arenes and heteroarenes. It is our hope that this review will stimulate researchers to further research and study in this really interesting research field.

References
