A review on the CO2 Incorporation Reactions Using Arynes

Document Type: Review Article

Authors

1 Payame Noor University

2 Islamic Azad University

Abstract

Arynes are highly reactive and kinetically unstable intermediates, which have been extensively utilized in various carbon-carbon and carbon-heteroatom bond formation reactions. Multi-component couplings of these intermediates are powerful transformations that allow for efficient synthesis of a wide range of carbocycles and heterocycles, as well as natural products. On the other hand, CO2-fixation reactions are one of the safest and most inexpensive methods for the synthesis of various value-added chemicals. Along this line, recently, several elegant multi-component reactions involving arynes were designed for the incorporation of CO2. This review provides a comprehensive overview of the CO2 incorporation reactions using arynes, with the emphasis on the mechanistic aspects of the reactions

Graphical Abstract

A review on the CO2 Incorporation Reactions Using Arynes

Keywords


[1] B. Yu and L. N. He, Upgrading carbon dioxide by incorporation into heterocycles, ChemSusChem. 108 (2015) 52-62.

[2] G. Fiorani, W. Guo and A. W. Kleij, Sustainable conversion of carbon dioxide: The advent of organocatalysis, Green Chem., 17 (2015) 1375-1389.

[3] J. Rintjema and A. W. Kleij, Substrate-assisted carbon dioxide activation as a versatile approach for heterocyclic synthesis, Synthesis., 48 (2016) 3863-3878.

 [4] J. E. Gómez and A. W. Kleij, Recent progress in stereoselective synthesis of cyclic organic carbonates and beyond, Curr. Opin. Green. Sus., 3 (2017) 55-60.

[5] X.-F. Wu and F. Zheng, Synthesis of carboxylic acids and esters from CO2, Top. Curr. Chem. (2017) DOI: 10.1007/s41061-016-0091-6.

[6] Q.-W. Song, Z.-H. Zhou and L.-N. He, Efficient, selective and sustainable catalysis of carbon dioxide, Green. Chem., 19 (2017) 3707-3728.

[7] X.-D. Lang, X. He, Z.-M. Li, L.-N. He, New routes for CO2 activation and subsequent conversion, Curr. Opin. Green. Sus., 7 (2017) 31-38.

[8] M. Bonchio, A. Cherubini-Celli, J. Mateos, L. Dell’Amico, X. Companyó, Transition‐metal‐free CO2 fixation into new carbon‐carbon bonds, ChemSusChem, 11 (2018) 3056-3070.

[9] R. Martin, A. Tortajada, F. Juliá-Hernández, M. Borjesson, T. Moragas, Transition metal‐catalyzed carboxylation reactions with carbon dioxide, Angew. Chem. Int. Ed., (2018), DOI: 10.1002/anie.201803186.

[10] R. Norhasyima, T. Mahlia, Advances in CO₂ utilization technology: A patent landscape review, J. CO2 Util., 26 (2018) 323-335.

[11] a) E. Vessally, A new avenue to the synthesis of highly substituted pyrroles: synthesis from N-propargylamines, RSC Adv., 6 (2016) 18619-18631; b) E. Vessally, H. Saeidian, A. Hosseinian, L. Edjlali, A. Bekhradnia, A review on synthetic applications of oxime esters, Curr.Org. Chem., 21 (2017) 249-271; c) E. Vessally, L. Edjlali, A. Hosseinian, A. Bekhradnia, M.D. Esrafili, Novel routes to quinoline derivatives from N-propargylamines, RSC Adv., 6 (2016) 49730-49746; d) E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M.D. Esrafili, New page to access pyridine derivatives: synthesis from N-propargylamines, RSC Adv., 6 (2016) 71662-71675; e) E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M. D Esrafili, New page to access pyrazines and their ring fused analogues: Synthesis from N-propargylamines, Curr.Org. Synth., 14 (2017) 557-567; f) E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M.D. Esrafili, New route to 1, 4-oxazepane and 1, 4-diazepane derivatives: synthesis from N-propargylamines, RSC Adv., 6 (2016) 99781-99793; g) E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, New protocols to access imidazoles and their ring fused analogues: synthesis from N-propargylamines, RSC Adv., 7 (2017) 7079-7091; h) M. Babazadeh, S. Soleimani-Amiri, E. Vessally, A. Hosseinian, L. Edjlali, Transition metal-catalyzed [2+ 2+ 2] cycloaddition of nitrogen-linked 1, 6-diynes: a straightforward route to fused pyrrolidine systems, RSC Adv., 7 (2017) 43716-43736; i) S. Arshadi, E. Vessally, L. Edjlali, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, N-Propargylamines: versatile building blocks in the construction of thiazole cores, Beilstein J. Org. Chem., 13 (2017) 625-638; j) E. Vessally, A. Hosseinian, L. Edjlali, E. Ghorbani-Kalhor, R. Hosseinzadeh-Khanmiri, Intramolecular cyclization of N-propargyl anilines: a new synthetic entry into highly substituted indoles, J. Iran. Chem. Soc., 14 (2017) 2339-2353; k) S. Arshadi, E. Vessally, L. Edjlali, E. Ghorbani-Kalhor, R. Hosseinzadeh-Khanmiri, N-Propargylic β-enaminocarbonyls: powerful and versatile building blocks in organic synthesis, RSC Adv., 7 (2017) 13198-13211; l) E. Vessally, A. Hosseinian, L. Edjlali, M. Babazadeh, R. Hosseinzadeh-Khanmiri, New strategy for the synthesis of morpholine cores: synthesis from N-propargylamines, Iran. J. Chem. Chem. Eng., 36 (2017) 1-13; m) S. Arshadi, E. Vessally, M. Sobati, A. Hosseinian, A. Bekhradnia, Chemical fixation of CO2 to N-propargylamines: a straightforward route to 2-oxazolidinones, J. CO2 Util., 19 (2017) 120-129; n) E. Vessally, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M. Es' haghi, A. Bekhradnia, Domino carbometalation/coupling reactions of N-arylpropiolamides: a novel and promising synthetic strategy toward stereocontrolled preparation of highly substituted 3-methyleneindolinones, RSC Adv., 7 (2017) 19061-19072; o) E. Vessally, M. Babazadeh, K. Didehban, A. Hosseinian, L. Edjlali, Intramolecular ipso-Cyclization of N-Arylpropiolamides: A Novel and Straightforward Synthetic Approach for Azaspiro [4.5] decatrien-2-ones, Curr. Org. Chem., 22 (2018) 286-297; p) E. Vessally, M. Babazadeh, K. Didehban, A. Hosseinian, L. Edjlali, Intramolecular Cyclization of N-Arylpropiolamides: A New Strategy for the Synthesis of Functionalized 2-Quinolones, Curr. Org. Chem., 21 (2017) 2561-2572;

[12] T. Kitamura, Synthetic methods for the generation and preparative application of benzyne, Aust. J. Chem., 63 (2010) 987-1001.

[13] P.M. Tadross, B.M. Stoltz, A comprehensive history of arynes in natural product total synthesis, Chem. Rev., 112 (2012) 3550-3577.

[14] A. Bhunia, S.R. Yetra, A.T. Biju, Recent advances in transition-metal-free carbon–carbon and carbon–heteroatom bond-forming reactions using arynes, Chem. Soc. Rev., 41 (2012) 3140-3152.

[15] S.S. Bhojgude, A.T. Biju, Arynes in transition‐metal‐free multicomponent coupling reactions, Angew. Chem. Int. Ed., 51 (2012) 1520-1522.

[16] A.V. Dubrovskiy, N.A. Markina, R.C. Larock, Use of benzynes for the synthesis of heterocycles, Org. Biomol. Chem., 11 (2013) 191-218.

[17] T. Roy, A.T. Biju, Recent advances in molecular rearrangements involving aryne intermediates, Chem. Commun., 54 (2018) 2580-2594.

[18] M.G. Moloney, How to Solve Organic Reaction Mechanisms: A Stepwise Approach, John Wiley & Sons, (2015).

[19] a) S. Soleimani-Amiri, E. Vessally, M. Babazadeh, A. Hosseinian, L. Edjlali, Intramolecular cyclization of N-allyl propiolamides: a facile synthetic route to highly substituted γ-lactams (a review), RSC Adv., 7 (2017) 28407-28418; b) E. Vessally, M. Babazadeh, A. Hosseinian, L. Edjlali, L. Sreerama, Recent Advances in Synthesis of Functionalized β-Lactams through Cyclization of N-Propargyl Amine/Amide Derivatives, Curr. Org. Chem., 22 (2018) 199-205; c) E. Vessally, M. Nikpasand, S. Ahmadi, P.D.K. Nezhad, A. Hosseinian, Transition metal-catalyzed intramolecular cyclization of N-Boc-protected propargyl/ethynyl amines: a novel and convenient access to 2-oxazolidinone/oxazolone derivatives, J. Iran. Chem. Soc., (2018) DOI: 10.1007/s13738-018-1542-5; d) E. Vessally, M. Babazadeh, A. Hosseinian, S. Arshadi, L. Edjlali, Nanocatalysts for chemical transformation of carbon dioxide, J. CO2 Util., 21 (2017) 491-502; e) E. Vessally, A. Hosseinian, L. Edjlali, M. Babazadeh, K. Didehban, Chemical Fixation of CO2 to Allylic (α-Allenylic) Amines: A Green Route to Synthesis of Functionalized 2-Oxazolidones, Mini-Rev. Org. Chem., 15 (2018) 315-323; f) A. Hosseinian, M. Babazadeh, L. Edjlali, Z. Rahmani, E. Vessally, Intramolecular Cyclization of Aryl Propargyl Ethers: A Straightforward and Convenient Approach to Benzofuran Derivatives, Curr. Org. Synth., 15 (2018) 972-981; g) E. Vessally, K. Didehban, R. Mohammadi, A. Hosseinian, M. Babazadeh, Recent advantages in the metal (bulk and nano)-catalyzed S-arylation reactions of thiols with aryl halides in water: a perfect synergy for eco-compatible preparation of aromatic thioethers, J. Sulfur Chem., 39 (2018) 332-349; h) K. Didehban, E. Vessally, A. Hosseinian, L. Edjlali, E.S. Khosroshahi, Nanocatalysts for C–Se cross-coupling reactions, RSC Adv., 8 (2018) 291-301; i) E. Vessally, R. Mohammadi, A. Hosseinian, K. Didehban, L. Edjlali, S-arylation of 2-mercaptobenzazoles: a comprehensive review, J. Sulfur Chem., 39 (2018) 443-463; j) A. Hosseinian, S. Farshbaf, L.Z. Fekri, M. Nikpassand, E. Vessally, Cross-Dehydrogenative Coupling Reactions Between P (O)–H and X–H (X= S, N, O, P) Bonds, Top. Curr. Chem., 376 (2018) 23; k)

[20] S. Sarhandi, M. Daghagheleh, M. Vali, R. Moghadami, E. Vessally, New insight in Hiyama cross-coupling reactions: Decarboxylative, denitrogenative and desulfidative couplings: A review, Chem. Rev. Lett. 1 (2018) 9-15.

[21] a) E. Vessally, K. Didehban, M. Babazadeh, A. Hosseinian, L. Edjlali, Chemical fixation of CO2 with aniline derivatives: A new avenue to the synthesis of functionalized azole compounds (A review), J. CO2 Util., 21 (2017) 480-490; b) S. Arshadi, E. Vessally, A. Hosseinian, S. Soleimani-amiri, L. Edjlali, Three-component coupling of CO2, propargyl alcohols, and amines: An environmentally benign access to cyclic and acyclic carbamates (A Review), J. CO2 Util., 21 (2017) 108-118.

[22] E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, M. Babazadeh, Chemical fixation of CO2 to 2-aminobenzonitriles: A straightforward route to quinazoline-2, 4 (1H, 3H)-diones with green and sustainable chemistry perspectives, J. CO2 Util., 21 (2017) 342-352.

[23] K. Didehban, E. Vessally, M. Salary, L. Edjlali, M. Babazadeh, Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives, J. CO2 Util., 23 (2018) 42-50.

[24] E. Vessally, R. Mohammadi, A. Hosseinian, L. Edjlali, M. Babazadeh, Three component coupling of amines, alkyl halides and carbon dioxide: An environmentally benign access to carbamate esters (urethanes), J. CO2 Util., 24 (2018) 361-368.

[25] S. Farshbaf, L.Z. Fekri, M. Nikpassand, R. Mohammadi, E. Vessally, Dehydrative condensation of β-aminoalcohols with CO2: An environmentally benign access to 2-oxazolidinone derivatives, J. CO2 Util., 25 (2018) 194-204.

[26] A. Hosseinian, S. Ahmadi, R. Mohammadi, A. Monfared, Z. Rahmani, Three-component reaction of amines, epoxides, and carbon dioxide: A straightforward route to organic carbamates, J. CO2 Util., 27 (2018) 381-389.

[27] A. Hosseinian, S. Farshbaf, R. Mohammadi, A. Monfared, E. Vessally, Advancements in six-membered cyclic carbonate (1,3-dioxan-2-one) synthesis utilizing carbon dioxide as a C1 source, RSC Adv. 8 (2018) 17976-17988.

[28] E. Vessally, A. Hosseinian, L. Edjlali, M. Babazadeh, K. Didehban, Chemical fixation of CO2 to allylic (α-allenylic) amines: A green route to synthesis of functionalized 2-oxazolidones, Mini. Rev. Org. Chem., 15 (2018) 315-323.

[29] E. Vessally, A. Hosseinian, M. Babazadeh, L. Edjlali, R. Hosseinzadeh-Khanmiri, Metal catalyzed carboxylative coupling of terminal alkynes, organohalides and carbon dioxide: A novel and promising synthetic strategy toward 2-alkynoates (A Review), Curr. Org. Chem., 22 (2018) 315-322.

[30] H. Yoshida, H. Fukushima, J. Ohshita, A. Kunai, CO2 incorporation reaction using arynes: Straightforward access to benzoxazinone, J. Am. Chem. Soc., 128 (2006) 11040-11041.

[31] C.-L. Sun, Z.-J. Shi, Transition-metal-free coupling reactions, Chem. Rev., 114 (2014) 9219-9280.

[32] H. Yoshida, T. Morishita, J. Ohshita, Direct access to anthranilic acid derivatives via CO2 incorporation reaction using arynes, Org. Lett., 10 (2008) 3845-3847.

[33] M. Yonemoto-Kobayashi, K. Inamoto, Y. Kondo, Desilylative Carboxylation of aryltrimethylsilanes using CO2 in the presence of catalytic phosphazenium salt, Chem. Lett., 43 (2013) 477-479.

[34] W.J. Yoo, T.V. Nguyen, S. Kobayashi, Synthesis of isocoumarins through three‐component couplings of arynes, terminal alkynes, and carbon dioxide catalyzed by an NHC–copper complex, Angew. Chem. Int. Ed., 53 (2014) 10213-10217.

[35] T. Kaicharla, M. Thangaraj, A.T. Biju, Practical synthesis of phthalimides and benzamides by a multicomponent reaction involving arynes, isocyanides, and CO2/H2O, Org. Lett., 16 (2014) 1728-1731.

[36] Y. Fang, S.-Y. Wang, S.-J. Ji, Synthesis of phthalimides through 1, 3-dipolar cycloaddition of CO2 with isocyanides and arynes, Tetrahedron, 71 (2015) 2768-2771.

[37] S.S. Bhojgude, T. Roy, R.G. Gonnade, A.T. Biju, Substrate-controlled selectivity switch in the three-component coupling involving arynes, aromatic tertiary amines, and CO2, Org. Lett., 18 (2016) 5424-5427.

[38] W. Xiong, C. Qi, R. Cheng, H. Zhang, L. Wang, D. Yan, H. Jiang, A four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates, Chem.Commun., 54 (2018) 5835-5838.