Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study

Document Type : Research Article

Authors

1 Department of Science, Payame Noor University, P. O. Box: 19395-4697 Tehran, Iran

2 Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

The doping of the Li atom and CO2 molecule to the X2B8 (X = Be, B and C) backbones have been carried out on the potential energy surface to provide clear vision on the structural and electronic features of the Y@X2B8 (Y = Li, CO2 and Li&CO2, X = Be, B and C) systems. Our results show that the adsorption energies of the Li atom in the Li@X2B8 systems (-1.52 eV ~ -3.05 eV) are much bigger than those of the CO2 molecule in the CO2@X2B8 systems (-0.10 eV ~ -0.89 eV). Moreover, the B2B8 and the Be2B8 can be selected as prefer backbones for the adsorption of Li atom and the CO2 molecule, respectively. Finally, bigger adsorption energy of the Li&CO2@Be2B8 system (-1.06 eV) compared with that of the CO2@Be2B8 system (-0.89 eV) presents that the Li atom doping in the Be2B8 backbone increases adsorption energy of the CO2 molecule. Similar result has been not found for the B2B8 and the C2B8 backbones

Graphical Abstract

Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study

Keywords


References
References
[1] C.C. Johansson Seechurn, MO Kitching, TJ Colacot, V Snieckus, Palladium‐catalyzed cross‐coupling: a historical contextual perspective to the 2010 Nobel Prize, Angew. Chem. Int. Ed., 51 (2012) 5062-5085.
[2] I.P. Beletskaya, V.P. Ananikov, Transition-metal-catalyzed C−S, C−Se, and C−Te bond formation via cross-coupling and atom-economic addition reactions, Chem. Rev., 111 (2011) 1596-1636.
[3] H.F. Sore, W.R. Galloway, D.R. Spring, Palladium-catalysed cross-coupling of organosilicon reagents, Chem. Soc. Rev., 41 (2012) 1845-1866.
[4] F Foubelo, C Nájera, M Yus, The Hiyama cross‐coupling reaction: New discoveries, Chem Rec, 16 (2016) 2521-2533.
[5] M. Abdoli, H. Saeidian, Synthesis and reactivity of imidazole-1-sulfonate esters (imidazylates) in substitution, elimination, and metal-catalyzed cross-coupling reactions: a review, J. Sulfur. Chem., 36 (2015) 556-582.
[6] S. Kovács, Á.I. Csincsi, T.Z. Nagy, S. Boros, G. Timári, Z. Novák, Design and application of new imidazolylsulfonate-based benzyne precursor: an efficient triflate alternative, Org. Lett., 14 (2012) 2022-2025.
[7] H. Li, T. Miao, M. Wang, P. Li, L. Wang, Recent advances in exploring diverse decarbonylation, decarboxylation and desulfitation coupling reactions for organic transformations, Synlett., 27 (2016) 1635-1648.
[8a] E. Vessally, A new avenue to the synthesis of highly substituted pyrroles: synthesis from N-propargylamines, RSC Adv., 6 (2016) 18619-18631;
[8b] E. Vessally, H. Saeidian, A. Hosseinian, L. Edjlali, A. Bekhradnia, A review on synthetic applications of oxime esters, Curr.Org. Chem., 21 (2017) 249-271;
[8c] E. Vessally, L. Edjlali, A. Hosseinian, A. Bekhradnia, M.D. Esrafili, Novel routes to quinoline derivatives from N-propargylamines, RSC Adv., 6 (2016) 49730-49746;
[8d] E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M.D. Esrafili, New page to access pyridine derivatives: synthesis from N-propargylamines, RSC Adv., 6 (2016) 71662-71675;
[8e] E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M. D Esrafili, New page to access pyrazines and their ring fused analogues: Synthesis from N-propargylamines, Curr.Org. Synth., 14 (2017) 557-567;
[8f] E. Vessally, A. Hosseinian, L. Edjlali, A. Bekhradnia, M.D. Esrafili, New route to 1, 4-oxazepane and 1, 4-diazepane derivatives: synthesis from N-propargylamines, RSC Adv., 6 (2016) 99781-99793;
[8g] E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, A. Bekhradnia, New protocols to access imidazoles and their ring fused analogues: synthesis from N-propargylamines, RSC Adv., 7 (2017) 7079-7091;
[8h] M. Babazadeh, S. Soleimani-Amiri, E. Vessally, A. Hosseinian, L. Edjlali, Transition metal-catalyzed [2+ 2+ 2] cycloaddition of nitrogen-linked 1, 6-diynes: a straightforward route to fused pyrrolidine systems, RSC Adv., 7 (2017) 43716-43736;
[8i] S. Arshadi, E. Vessally, L. Edjlali, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, N-Propargylamines: versatile building blocks in the construction of thiazole cores, Beilstein J. Org. Chem., 13 (2017) 625-638;
[8j] E. Vessally, A. Hosseinian, L. Edjlali, E. Ghorbani-Kalhor, R. Hosseinzadeh-Khanmiri, Intramolecular cyclization of N-propargyl anilines: a new synthetic entry into highly substituted indoles, J. Iran. Chem. Soc., 14 (2017) 2339-2353;
[8k] S. Arshadi, E. Vessally, L. Edjlali, E. Ghorbani-Kalhor, R. Hosseinzadeh-Khanmiri, N-Propargylic β-enaminocarbonyls: powerful and versatile building blocks in organic synthesis, RSC Adv., 7 (2017) 13198-13211;
[8l] E. Vessally, A. Hosseinian, L. Edjlali, M. Babazadeh, R. Hosseinzadeh-Khanmiri, New strategy for the synthesis of morpholine cores: synthesis from N-propargylamines, Iran. J. Chem. Chem. Eng., 36 (2017) 1-13;
[8m] S. Arshadi, E. Vessally, M. Sobati, A. Hosseinian, A. Bekhradnia, Chemical fixation of CO2 to N-propargylamines: a straightforward route to 2-oxazolidinones, J. CO2 Util., 19 (2017) 120-129;
[8n] E. Vessally, R. Hosseinzadeh-Khanmiri, E. Ghorbani-Kalhor, M. Es'haghi, A. Bekhradnia, Domino carbometalation/coupling reactions of N-arylpropiolamides: a novel and promising synthetic strategy toward stereocontrolled preparation of highly substituted 3-methyleneindolinones, RSC Adv., 7 (2017) 19061-19072;
[8o] E. Vessally, M. Babazadeh, K. Didehban, A. Hosseinian, L. Edjlali, Intramolecular ipso-Cyclization of N-Arylpropiolamides: A Novel and Straightforward Synthetic Approach for Azaspiro [4.5] decatrien-2-ones, Curr. Org. Chem., 22 (2018) 286-297;
 [9a] S. Soleimani-Amiri, E. Vessally, M. Babazadeh, A. Hosseinian, L. Edjlali, Intramolecular cyclization of N-allyl propiolamides: a facile synthetic route to highly substituted γ-lactams (a review), RSC Adv., 7 (2017) 28407-28418;
[9b] E. Vessally, M. Babazadeh, A. Hosseinian, L. Edjlali, L. Sreerama, Recent Advances in Synthesis of Functionalized β-Lactams through Cyclization of N-Propargyl Amine/Amide Derivatives, Curr. Org. Chem., 22 (2018) 199-205;
[9c] E. Vessally, A. Hosseinian, M. Babazadeh, L. Edjlali, R. Hosseinzadeh-Khanmiri, Metal Catalyzed Carboxylative Coupling of Terminal Alkynes, Organohalides and Carbon Dioxide: A Novel and Promising Synthetic Strategy toward 2-Alkynoates (A Review), Curr. Org. Chem., 22 (2018) 315-322;
[9d] S. Arshadi, E. Vessally, A. Hosseinian, S. Soleimani-amiri, L. Edjlali, Three-component coupling of CO2, propargyl alcohols, and amines: An environmentally benign access to cyclic and acyclic carbamates (A Review), J. CO2 Util., 21 (2017) 108-118;
[9e] E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, M. Babazadeh, Chemical fixation of CO2 to 2-aminobenzonitriles: a straightforward route to quinazoline-2, 4 (1H, 3H)-diones with green and sustainable chemistry perspectives, J. CO2 Util., 21 (2017) 342-352;
[9f] E. Vessally, M. Babazadeh, A. Hosseinian, S. Arshadi, L. Edjlali, Nanocatalysts for chemical transformation of carbon dioxide, J. CO2 Util., 21 (2017) 491-502;
[9g] E. Vessally, K. Didehban, M. Babazadeh, A. Hosseinian, L. Edjlali, Chemical fixation of CO2 with aniline derivatives: A new avenue to the synthesis of functionalized azole compounds (A review), J. CO2 Util., 21 (2017) 480-490;
[9h] E. Vessally, A. Hosseinian, L. Edjlali, M. Babazadeh, K. Didehban, Chemical Fixation of CO2 to Allylic (α-Allenylic) Amines: A Green Route to Synthesis of Functionalized 2-Oxazolidones, Mini-Rev. Org. Chem., 15 (2018) 315-323;
[9i] A. Hosseinian, M. Babazadeh, L. Edjlali, Z. Rahmani, E. Vessally, Intramolecular Cyclization of Aryl Propargyl Ethers: A Straightforward and Convenient Approach to Benzofuran Derivatives, Curr. Org. Synth., 15 (2018) 972-981;
[9j] K. Didehban, E. Vessally, M. Salary, L. Edjlali, M. Babazadeh, Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives, J. CO2 Util., 23 (2018) 42-50;
[10] A. Hosseinian, S. Farshbaf, L.Z. Fekri, M. Nikpassand, E. Vessally, Cross-Dehydrogenative Coupling Reactions Between P (O)–H and X–H (X= S, N, O, P) Bonds, Top. Curr. Chem., 376 (2018) 23.
[11] F.A.H. Nasab, L.Z. Fekri, A. Monfared, A. Hosseinian, E. Vessally, Recent advances in sulfur–nitrogen bond formation via cross-dehydrogenative coupling reactions, RSC Adv., 8 (2018) 18456-18469.
[12] S. Farshbaf, L.Z. Fekri, M. Nikpassand, R. Mohammadi, E. Vessally, Dehydrative condensation of β-aminoalcohols with CO 2: An environmentally benign access to 2-oxazolidinone derivatives, J. CO2 Util., 25 (2018) 194-204.
[13] A. Hosseinian, S. Ahmadi, A. Monfared, P.D. Nezhad, E. Vessally, Nano-structured Catalytic Systems in Cyanation of Aryl Halides with K4 [Fe (CN) 4], Curr. Org. Chem., 22 (2018) 1862-1874.
[14] A. Hosseinian, L. Zare Fekri, A. Monfared, E. Vessally, M. Nikpassand, Transition-metal-catalyzed C–N cross-coupling reactions of N-unsubstituted sulfoximines: a review, J. Sulfur Chem., 39 (2018) 674-698.
[15] K. Nejati, S. Ahmadi, M. Nikpassand, P.D.K. Nezhad, E. Vessally, Diaryl ethers synthesis: nano-catalysts in carbon-oxygen cross-coupling reactions, RSC Adv., 8 (2018) 19125-19143.
[16] A. Hosseinian, S. Ahmadi, F.A.H. Nasab, R. Mohammadi, E. Vessally, Cross-Dehydrogenative C–H/S–H Coupling Reactions, Top. Curr. Chem., 376 (2018) 39.
[17] E. Vessally and M. Abdoli, Oxime ethers as useful synthons in the synthesis of a number of key medicinal heteroaromatic compounds,J. Iran. Chem. Soc., 13 (2016) 1235–1256.
[18] A. Hosseinian, S. Farshbaf, R. Mohammadi, A. Monfared, E. Vessally, Advancements in six-membered cyclic carbonate (1, 3-dioxan-2-one) synthesis utilizing carbon dioxide as a C1 source, RSC Adv., 8 (2018) 17976-17988.
[19] N. Rodriguez, L.J. Goossen, Decarboxylative coupling reactions: a modern strategy for C–C-bond formation, Chem. Soc. Rev. 40 (2011) 5030-5048.
[20] A. Hosseinian, F.A.H. Nasab, S. Ahmadi, Z. Rahmani, E. Vessally, Decarboxylative cross-coupling reactions for P (O)–C bond formation, RSC Adv. 8 (2018) 26383-26398.
[21] A. Hosseinian, P.D.K. Nezhad, S. Ahmadi, Z. Rahmani, A. Monfared, A walk around the decarboxylative CS cross-coupling reactions, J. Sulfur Chem. 39 (2018) DOI: 10.1080/17415993.2018.1515314.
[22] L.J. Goossen, K. Gooßen, Decarboxylative coupling reactions, Top. Organomet. Chem. 44 (2013) 121–142.
[23] D. Katayev, B. Exner, L.J. Goossen, Synthesis of biaryls by decarboxylative Hiyama coupling, ChemCatChem, 7 (2015) 2028-2032.
[24] G.C. Edwin Raja, F.M. Irudayanathan, H.S. Kim, J. Kim, S. Lee, Nickel-catalyzed Hiyama-type decarboxylative coupling of propiolic acids and organosilanes, J. Org. Chem. 81 (2016) 5244-5249.
[25] J. Jang, G.C.E. Raja, J.H. Lee, Y. Son, J. Kim, S. Lee, Palladium-catalyzed decarboxylative coupling reaction with alkynyl carboxylic acids and arylsiloxanes, Tetrahedron Lett, 57 (2016) 4581-4584.
[26] K. Cheng, C. Wang, Y. Ding, Q. Song, C. Qi, X.M. Zhang, Hiyama cross-coupling of arenediazonium salts under mild reaction conditions, J. Org. Chem. 76 (2011) 9261-9268.
[27] K. Cheng, B. Zhao, S. Hu, X.M. Zhang, C. Qi, Pd-catalyzed cross-coupling reactions of arenediazonium salts with arylsilanes and aryltrifluoroborates in water, Tetrahedron Lett. 54 (2013) 6211-6214.
[28] H. Zhang, C. Wang, Z. Li, Z. Wang, Palladium-catalyzed denitrogenative Hiyama cross-coupling with arylhydrazines under air, Tetrahedron Lett. 56 (2015) 5371-5376.
[29] Y. Li, W. Liu, Q. Tian, Q. Yang, C. Kuang, Palladium‐catalyzed Suzuki cross‐coupling of phenylhydrazine or (phenylsulfonyl) hydrazine, Eur. J. Org. Chem. 2014 (2014) 3307-3312.
[30] K. Yuan, J.F.O. Soulé, H. Doucet, Functionalization of C–H bonds via metal-catalyzed desulfitative coupling: an alternative tool for access to aryl-or alkyl-aubstituted (hetero) arenes, ACS Catal, 5 (2015) 978-991.
 
[31] K. Cheng, S. Hu, B. Zhao, X.M., Zhang, C. Qi, Palladium-catalyzed Hiyama-type cross-coupling reactions of arenesulfinates with organosilanes, J. Org. Chem., 78 (2013) 5022-5025.
[32] W. Zhang, F. Liu, K. Li, B. Zhao, Pd‐catalyzed desulfitative Hiyama coupling with sulfonyl chlorides, Appl. Organomet. Chem. 28 (2014) 379-381.
[33] H. Miao, F. Wang, S. Zhou, G. Zhang, Y. Li, Palladium-catalyzed Hiyama coupling reaction of arylsulfonyl hydrazides under oxygen, Org. Biomol. Chem. 13 (2015) 4647-4651.