Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study

Document Type: Research Article


1 Payame Noor University

2 Islamic Azad University


The doping of the Li atom and CO2 molecule to the X2B8 (X = Be, B and C) backbones have been carried out on the potential energy surface to provide clear vision on the structural and electronic features of the Y@X2B8 (Y = Li, CO2 and Li&CO2, X = Be, B and C) systems. Our results show that the adsorption energies of the Li atom in the Li@X2B8 systems (-1.52 eV ~ -3.05 eV) are much bigger than those of the CO2 molecule in the CO2@X2B8 systems (-0.10 eV ~ -0.89 eV). Moreover, the B2B8 and the Be2B8 can be selected as prefer backbones for the adsorption of Li atom and the CO2 molecule, respectively. Finally, bigger adsorption energy of the Li&CO2@Be2B8 system (-1.06 eV) compared with that of the CO2@Be2B8 system (-0.89 eV) presents that the Li atom doping in the Be2B8 backbone increases adsorption energy of the CO2 molecule. Similar result has been not found for the B2B8 and the C2B8 backbones

Graphical Abstract

Insight into Y@X2B8 (Y= Li, CO2 and Li-CO2, X = Be, B and C) nanostructures: A computational study



[1] H. Tang, S. Ismail-Beigi; Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets; Phys. Rev. Lett. 99 (2007) 115501–115504.

[2] H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, L.S. Wang, hepta‐and octacoordinate boron in molecular wheels of eight‐and nine‐atom boron clusters: observation and confirmation; Angew. Chem. Int. Ed.; 42 (2003) 6004–6008.

[3] Z.A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L.S. Wang; Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets; Nat. Commun. 5 (2014) 3113–3119.

[4] A. Muñoz-Castro, I.A. Popov, A.I. Boldyrev, Long-range magnetic response of toroidal boron structures: B16 and [Co@B16] −/3− species; Phys. Chem. Chem. Phys. 19 (2017) 26145-26150.

[5] J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties; J. Phys. Rev. B; 74 (2006) 035413–035427.

[6] K.C. Lau, R. Pandey, Thermodynamic stability of novel boron sheet configurations, J. Phys. Chem. B; 112 (2008) 10217–10220.

[7] W. An, S. Bulusu, Yi. Gao, X.C. Zeng, Relative stability of planar versus double-ring tubular isomers of neutral and anionic boron cluster B20 and B20-; J. Chem. Phys. 124 (2006) 154310-154316.

[8] X-M. Luo, T. Jian, L-J. Cheng, W-L. Li, Q. Chen, R. Li, H-J. Zhai, S-D. Li, A.I. Boldyrev, J. Li, L-S. Wang, B26-: The smallest planar boron cluster with a hexagonal vacancy and a complicated potential landscape, Chem. Phys. Lett. 683 (2017) 336-341.

[10] S. Erhardt, G. Frenking, Z. Chen, P.R. Schleyer, Aromatic boron wheels with more than one carbon atom in the center: C2B8, C3B93+, and C5B11+; Angew. Chem. Int. Ed. 44 (2005) 1078–1082.

[11] Z.h. Cui, W.S. Yang, L. Zhao, Y. Ding, G. Frenking, Unusually Short Be− Be Distances with and without a Bond in Be2F2 and in the Molecular Discuses Be2B8 and Be2B7; Angew. Chem. 128 (2016) 7972–7977.

[12] F. Biegler-König, J. Schönbohm, AIM2000 Program Package Ver. 2.0. University of Applied Sciences Bielefeld, (2002).

[13] T. Lu, F. Chen, Multiwfn: a multifunctional wave function analyzer, J. Comput. Chem. 33 (2015) 580–592.

[14] H.A. Kurtz, J.J.P. Stewart, K.M. Dieter; Calculation of the nonlinear optical properties of molecules; J. Comput. Chem. 11 (1990) 82–87.

[15] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, Montgomery JA; General atomic and molecular electronic structure system, J. Comput. Chem. 14 (1993) 1347–1363.

[16] a) E. Vessally, S. Soleimani–Amiri, A. Hosseinian, L. Edjlali and A. Bekhradnia A comparative computational study on the BN ring doped nanographenes, Appl. Surf. Sci., 396 (2017) 740–745; b) K. Nejati, A. Hosseinian, L. Edjlali and E. Vessally, The effect of structural curvature on the cell voltage of BN nanotube based Na–ion batteriesJ. Mol. Liq., 229 (2017) 167–171; c) L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian and L. Edjlali, A DFT study on the sensitivity of two–dimensional BN nanosheet to nerve agents cyclosarin and tabun, Thin Solid Films, 623 (2017) 157–163; d) S. A. Siadati, E. Vessally, A. Hosseinian and L. Edjlali, Possibility of sensing, adsorbing, and destructing the Tabun–2D–skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives, Synthetic Met., 220 (2016) 606–611;  e) E. Vessally, F. Behmagham, B. Massoumi, A. Hosseinian and L. Edjlal, Carbon nanocone as an electronic sensor for HCl gas: Quantum chemical analysis, Vacuum, 134 (2016) 40–47;  f) S. Bashiri, E. Vessally, A. Bekhradnia, A. Hosseinian and L. Edjlali, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies, Vacuum, 136 (2017) 156–162; g) F. Behmagham, E. Vessally, B. Massoumi, A. Hosseinian and L. Edjlali A computational study on the SO2 adsorption by the pristine, Al, and Si doped BN nanosheets, Superlattices Microstruct., 100 (2016) 350–357; h) E. Vessally, S. A. Siadati, A. Hosseinian and L. Edjlali, Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment, Talanta, 162 (2017) 505–510; i) E. Vessally, S. Soleimani–Amiri, A. Hosseinian, L. Edjlali and A. Bekhradnia The Hartree–Fock exchange effect on the CO adsorption by the boron nitride nanocage, Phys. E, 87 (2017) 308–311; j) A. Hosseinian, A. Bekhradnia, E. Vessally, L. Edjlali, M.D. Esrafili, A DFT study on the central–ring doped HBC nanographenes, J. Mol. Graph. Model., 73 (2017) 101–107; k) A. Hosseinian, Z. Asadi, L. Edjlali, A. Bekhradnia, E. Vessally, NO2 sensing properties of a borazine doped nanographene: A DFT study, Comput. Theor. Chem., 1106 (2017) 36–42; l) K. Nejati, A. Hosseinian, A. Bekhradnia, E. Vessally, L. Edjlali, Na–ion batteries based on the inorganic BN nanocluster anodes: DFT studies, J. Mol. Graph. Model., 74 (2017) 1–7; m) K. Nejati, A. Hosseinian, E. Vessally, A. Bekhradnia, L. Edjlali, A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets, Appl. Surf. Sci., 422 (2017) 763–768; n) K. Nejati, A. Hosseinian, E. Vessally, A. Bekhradnia, L. Edjlali, A theoretical study on the electronic sensitivity of the pristine and Al-doped B24N24 nanoclusters to F2CO and Cl2CO gases, Struct. Chem., 28 (2017) 1919–1926; o) N. Salehi, L. Edjlali, E. Vessally, I. Alkorta, M. Es'haghi, Lin@Tetracyanoethylene (n=1–4) systems: Lithium salt vs lithium electride,  Comput. Theor. Chem., 1149 (2019)17–23.

[18] C. Tu, G. Yu, G. Yang, X. Zhao, W. Chen, S. Li, X. Huang, Constructing (super) alkali–boron-heterofullerene dyads: an effective approach to achieve large first hyper polarizabilities and high stabilities in M3O–BC59 (M = Li, Na and K) and K@n-BC59 (n = 5 and 6); Phys. Chem. Chem. Phys. 16 (2014) 1597–1606.

[19] K. Okuno, Y. Shigeta, R. Kishi, M. Nakano, Photochromic switching of diradical character: design of efficient nonlinear optical switches; J. Phys. Chem. Lett., 4 (2013) 2418–2422.

[20] K. Hatua, P.K. Nandi, Beryllium-cyclobutadiene multidecker inverse sandwiches: electronic structure and second-hyperpolarizability, J. Phys. Chem. A 117 (2013) 12581–12589.

[21] H.Q. Wu, R.L. Zhong, S.L. Sun, H.L. Xu, Z.M. Su, Alkali metals-substituted adamantanes lead to visible light absorption: large first hyperpolarizability; J. Phys. Chem. C; 118 (2014) 6952–6958.

[22] K.B. Eisenthal, Second harmonic spectroscopy of aqueous nano-and microparticle interfaces; Chem. Rev. 106 (2006) 1462–1477.

[23] Y.Y. Hu, S.L. Sun, S. Muhammad, H.L. Xu, Z.M. Su, How the number and location of lithium atoms affect the first hyperpolarizability of graphene; J, Phys, Chem, C 114 (2010) 19792–19798