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1. Introduction 

The classification and detection of petroleum fuels is 
a vital part of the scientific investigation of arson, which 
has great significance for industrial, manufacturing, 
environmental, and forensic purposes. Arson can be 
described as a deliberate attempt to set a property on fire 
or to eradicate evidence of a crime and is considered one 
of the easiest crimes to commit but one of the hardest to 
prosecute [1, 2]. Fuels include gasoline, kerosene oil, or 
diesel are commonly used as accelerants in illegal 

activities as they are readily available and cheap [2, 3]. 
International standards have been developed for the 
analysis and classification of ignitable liquids also 
provide a general guide in forensic science for the 
definition and classification of the characteristics of 
petroleum products [4]. Quality control of gasoline are 
accessed by technical specifications which can vary in 
different parts of the world (e.g., EN 228 in Europe, 
ASTM D48 14 in the USA, JIS K2202 in Japan and IS 
2796 in India) [5]. Furthermore, the distinctiveness of 
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Forensic investigations place significant importance on the identification and 
utilisation of gasoline in crime scenes, particularly in cases involving arson. This 
study employed gas chromatography-mass spectrometry (GC-MS) to analyse 
gasoline samples. Additionally, chemometrics techniques, specifically principal 
component analysis (PCA), discriminant analysis (DA), and classification and 
regression tree (CART) machine learning, were utilised to identify and 
differentiate the gasoline brands and geographical origins. This study 
encompasses three widely recognized gasoline brands obtained from stations 
located across eight distinct Malaysian states, which also contains an oil refinery. 
A novel chromatogram, known as the targeted compounds chromatogram (TCC), 
was developed. It consists of toluene, p-xylene, propyl benzene, 1-ethyl-2-
methylbenzene, mesitylene, and indane, which were identified as markers using 
factor analysis. The TCC was then applied to fifty-three training samples, 
resulting in a 94% accurate classification of the brands and locations of origin. A 
unique machine-learning model called Classification and Regression 
Tree (CART) was constructed and effectively used to analyse 100 unidentified 
real gasoline samples. The model achieved a mean absolute error (MAE) of 1.1 
for location and 0.4 for brand. Furthermore, the accuracy of the estimator 
remained consistent even when changes were made to the training data set. The 
results collected clearly illustrate the capacity of this methodology to assist in 
solving of criminal investigations. 
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gasoline worldwide is also influenced by their 
significance in the metal content element [6]. 
Malaysia, which is geographically located near the 
equator, has hot and humid weather throughout the year. 
Thus, gasoline is very volatile and very difficult to 
detect in debris samples, especially in the summer. 
Samples sent to the laboratory will be analyzed using 
GC-MS and the chromatograms will be compared to 
those of gasoline. This process is time consuming and is 
subjected to individual interpretation. Besides the use of 
such processes, chemometric offer an alternative in the 
processing and classification of the results.  
Several methods have been proposed for the detection 
and discrimination of fuel samples based on gas 
chromatography-mass spectrometry (GC-MS) [1–3, 7, 
8], determination of additives by normal-phase high-
performance liquid chromatography (NP-HPLC) 
combined with GC-MS [9], and various spectroscopic 
methods, such as nuclear magnetic resonance (NMR), 
near-infrared (NIR) spectroscopy, and attenuated total-
reflection Fourier transform infrared (ATR-FTIR) 
spectroscopy [5, 10–14]. Although these analytical 
methods are widely used to determine the composition 
and classification of fuels, they have many drawbacks in 
that they are expensive to study. Many researchers have 
focused upon the determination of fuels using 
chemometric techniques such as principal-component 
analysis (PCA) [15], linear-discriminant analysis (LDA) 
[16], soft independent-class analog modeling (SIMCA) 
[17], and quadratic discriminant analysis (QDA) [18]. 
Unfortunately, there is no C&R trees (CART) modeling 
technique widely used in arson cases [19]. Ghazi et al. 
(2022), the sole Malaysian study on CART to date [20], 
reached the conclusion that the data requiring alignment 
prior to baseline correction or normalization and the 
untargeted GC-MS data of neat gasoline should 
preferably be aligned first, followed by normalization, 
and then by baseline correction. However, study 
adapting CART to real forensic cases are not 
highlighted as a validation of the developed model.  

The primary aim of this study is to assess the 
appropriateness of 13 components in gasoline, as 
suggested in ASTM E1618-19. Additionally, the study 
aims to collect basic training data that may be utilised in 
the CART model to predict the distinctive features of 
actual sample received. Gas chromatography-mass 
spectrometry (GC-MS) was used to analyse the gasoline 
samples. The data was used to construct target 
compound chromatogram (TCC) which is toluene, p-
xylene, propylbenzene, 1-ethyl-2-methylbenzene, 
mesitylene and indane (Fig. 1) prior to chemometrics. 
Principal component analysis was first employed to 

determine the compounds that has greater influence on 
the known gasoline samples. Factor analysis was used to 
determine the unique new targeted compounds used to 
differentiate gasoline brands and locations of origin. 
Discriminant analysis (DA) and C&R trees (CART) 
machine learning were applied to identify and 
discriminate the gasoline brands and locations of origin 
in this work. 
 
2. Materials and Methods 

 

2.1 Materials 
 The present research involved the sampling of 
RON95 gasoline from the northern (Penang and Perak), 
western (Selangor and Kuala Lumpur), eastern (Pahang 
and Terengganu), and southern (Malacca and Johor) 
states of Malaysia (Table 1). The enforcement agency 
collected training data from each state in the Malaysian 
peninsula, obtaining three randomly selected 
commercial brands (P, S, and C) and gasoline from the 
Kerteh oil refinery. In total, they obtained 53 samples. 
Samples (100 mL) were directly obtained from pumps 
using separate amber-glass bottles and transported to the 
laboratory at ambient temperature. Using the retention 
time based on premix hydrocarbon compounds, 100 
samples of unknown brand and location and premix 
hydrocarbon were also analysed under the same 
conditions and used for cross-validation. At the 
laboratory, all samples were kept at 4 °C prior to 
analysis. 
 
Table 1. Summary of the gasoline samples analyzed 
throughout this study. 

State Brand 
Number 

of 

samples 

Sample 

ID 

West 

Selangor 

P n = 3 

B S n = 3 

C n = 2 

Kuala 
Lumpur 

P n = 2 

W S n = 2 

C n = 1 

North 

Penang 
P n = 2 

PP 
S n = 2 

Perak 
P n = 2 

A 
S n = 3 
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South 

Johor 
P n = 2 

J 
S n = 2 

Malacca 

P n = 2 

M S n = 2 

C n = 1 

East 

Terengganu P n = 6 T 

Pahang 

P n = 2 

CA S n = 2 

C n = 2 

Kerteh 
(Refinery) 

P n = 4 

TR S n = 4 

C n = 2 

Unknown n=100 UNK 
 
2.2 Sample preparation 

 Gasoline samples were diluted 200 times with 
dichloromethane prior to analysis. The standard 
hydrocarbon premix solution for fire-debris analysis 
(ASTM E1618) (AccuStandard) was also used to verify 
the retention time of compound of interest such as 
toluene and they are labelled as "RT-compound name” 
for the variables used in chemometrics and machine 
learning in all samples. 
 

2.3 GC–MS analysis 

 All analyses were performed using an Agilent 7890A 
gas chromatograph coupled with an Agilent 5975C mass 
spectrometer (Agilent Technologies, Santa Clara, CA). 
The GC-MS was equipped with a HP5 fused-silica 
capillary column (30 m × 0.32 mm × 0.25 um, Agilent 
Technologies). Helium was used as a carrier gas at a 
nominal flow rate of 1.6 mLmin−1.; the inlet and 

transfer-line temperatures were held at 280 ◦C. The oven 
temperature was set to start at 40 ◦C (held for 2 
minutes), then the temperature increased to 280 ◦C at a 
rate of 25 ◦C min−1 (held for three minutes), giving a 
total run time of 14.6 min. An electron-impact 
ionization source (70 eV) was utilized with a 
quadrupole mass analyzer operated in full-scan mode 
(m/z 40–550) at a sampling rate of 2.94 scans s−1. The 
sample-injection volume was 1 ml delivered by a 
headspace syringe with a split ratio of 20:1. 

 The compounds were identified by comparing the mass 
spectra with those spectra from National Institute of 
Standards and Technology mass-spectral search 

program Version 14, Gaithersburg, MD. The data were 
analyzed using the MSD CHEMSTATION Agilent 
Software. By employing the RTE Integrator Parameters, 
the obtained data have a minimum peak area of 1,000, a 
centroidal peak position, a maximum of 60 peaks, and a 
5-baseline reset point allocation.  A compound was 
identified, and the peak area is used. Additionally, the 
selection of targeted-compound chromatograms 
applicable to the 53 samples was made using the 
guidelines provided by ASTM E1618-19 [20]. The use 
of statistical analysis in this study is very helpful for 
obtaining the uniqueness of the target-compound 
chromatograms.  
 
2.4 Statistical analysis 

 The total area of each compound in the GC-MS 
chromatograms is exported to Microsoft Office Excel 
before being analyzed using XLSTAT factor analysis 
2019.2.2 software. Additionally, a total of 4 statistical 
modules were used, namely data preparation 
(transformation variables), data description (normality), 
data visualization (scatter plot), and data analysis (PCA 
and DA) for a total of 53 gasoline training data. 60 
variables were utilised for PCA, and the implemented 
latent factor will consist of 6 variables. When matched 
to the standard hydrocarbon premix solution, the 6 
additional TCC variables are denoted as "RT-compound 
name" and referred to as supplementary variables. For 
discriminant analysis, 12 variables, 6 newly TCC and 6 
RT from the standard hydrocarbon premix solution, the 
same as those used for CART, were utilised. At an early 
stage in the determination of targeted-compound 
chromatograms in this study, factor analysis is used as a 
statistical module to obtain key latent factors. The target 
compound chromatograms (TCC) are based on 
guidelines set out in ASTM 1618-19 [21], and a total of 
100 samples of unknown gasoline brand and location of 
origin are used as prediction set to evaluate the efficacy 
of the CART model via the new TCC set.  
 
3. Result and Discussion 

 The total area of each compound in the GC-MS 
chromatograms is exported to Microsoft Office Excel 
before being analyzed using XLSTAT factor analysis. A 
total of 60 variables for each of the 53 training samples 
provide a loading factor of 45.8% for the two main 
factors affecting the distribution of all variables. The 
main contributing variables can be determined as they 
have the largest cosine squared values in the sequence 
of factors, as well as in the patent factor table. Referring 
to the ASTM stated that 13 compounds would be useful 
for the classification of gasoline. Based factor pattern 
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Table, toluene, p-xylene, propylbenzene, and 1-ethyl-2-
methylbenzene, mesitylene and indane are unique 
compounds which can differentiate the gasoline at factor 
analysis (Table 2) and can be clearly describe in Fig. 1.  
 After determining the 6 target compounds, all 53-
training data were tested using statistical analysis. All 
variables first needed to be transformed using 
standardizing mathematical methods in the XLSTAT 
function (data preparation). The normality of the 
distribution of variables in each dataset is then tested. 
Using normality tests such as Shapiro-Wilk, Anderson-
Darling, Lilliefors, and Jarque-Bera, all distributions of 
variables satisfied the Jarque-Bera test's alpha 
probability criteria of  > 0.05, indicating that the data 
are normally distributed. The normality distribution of 
the training data was also visualized using the scatter-
plot method; this test is very important for ensuring that 
these quantitative data are normally distributed. 
 
Table 2. New target compounds throughout this study. 
ASTM E1618-19 THIS STUDY 

Mesitylene / 1,3,5-
trimethylbenzene,   Toluene  

 1,2,4-trimethylbenzene  p-Xylene  

1,2,3-trimethylbenzene  propylbenzene  

Indane  
Mesitylene / 1,3,5-
trimethylbenzene  

1,2,4,5-tetramethylbenzene  1-ethyl-2-methylbenzene  

1,2,3,5-tetramethylbenzene  Indane  

5-Methylindane  

4-Methylindane  

Dodecane  

4,7- Dimethylindane  

2- Methylnaphthalene  

1- Methylnaphthalene  

Ethylnaphthalenes (mixed)  

1,3-Dimethylnaphthalene  

2,3-Dimethylnaphthalene  

 

 

Fig. 1. Target compound chromatogram (TCC) in this study. 
 
3.1 Principal component analysis 

 Principal component analysis (PCA) which is an 
unsupervised model simplifies high-dimensional data 
while retaining its trends and patterns by transforming 
the data into fewer dimensions, which act as summaries 
of features.  There was at least one correlation between 
the variables using Bartlett's sphericity test (significant 
level 0.05) and the Kaiser-Meyer-Olkin measure is 
larger than 0.5 and is thus acceptable so all variables can 
be used in the analysis. This value indicates that the 
total number of datasets in this study is sufficient. 

The PCA biplot showed that a total of 73.6% of 
variation in the samples was explained by of the first 
and second principal component. Indane, 1-ethyl-2-
methylbenzene, and propylbenzene are the three main 
components with positive characteristics on both 
principles, while p-xylene, toluene, and mesitylene have 
a positive distribution on the first principle but a 
negative distribution on the second. The biplot more 
clearly shows the correlation between the active 
variables and the sample data (Fig. 2). The negative 
parts of the two principal components, which are based 
on the figure, are not represented by any of the active 
variables, but by the negative part of the first principle 
and the positive part of the second. This indicates that 
this PCA analysis requires supporting data to make it 
more accurate and reliable.  
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4/027
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Fig. 2. Biplot for active variables and observations. F1 is the 
first factor or principal component 1(PC1). 
 
Since this study used the standard hydrocarbon premix 
solution to determine the retention-time of the 
compound of interest, the retention-time data were used 
to support PCA analysis by employing the 
supplementary data mode. The supplementary data 
consist of a total of sixty variables, six of which come 
from the standard hydrocarbon premix solution. Based 
on Fig. 3, the distribution of active and supplementary 
variables is better and covers each fraction of the two 
main components. The PCA biplot with extra 
supplementary data provides a clearer representation of 
the main components; therefore, with the availability of 
supplementary data, the results of PCA analysis can be 
clearly and easily understood. 

 

3.2 Discriminant Analysis 

 The gasoline training data used in this study include 
each sample’s location and brand; these data can 
therefore be analyzed with the aim of discriminating 
them. A total of six newly targeted compound 
chromatograms and six retention times (RT) of the 
standard hydrocarbon premix solution are included in 
the training data that is utilised. Such analysis is well 
known and has been widely used in recent studies. The 
discrimination analysis method for finding the location 
in this study is to use the Pillai’s test and the Hotelling–
Lawley trace; this test will ensure that all data have 
unique mean vectors at significance level of 0.05. 

Location-discrimination analysis was able to 
discriminate 100% of the training data. Five main 
groups of sampling locations can be successfully 
discriminated by referring to Fig. 4. 
 

 
Fig. 3. PCA plot for active and supplementary variables.  
 
  

Based on the results of the discriminant analysis of 
brands, Box test with the Chi-square asymptotic 
approximation method and Kullback's, respectively, 
showed the results that there was a difference in the 
covariance between each brand. Referring to the 
observation chart, the first factor (F1) represents 59.6% 
of the variance while F2 represents 40.3%of the 
variance, and it appears that three brands can be 
discriminated and that each has its own unique centroid 
(Fig. 5).  

The confusion-matrix information for data training and 
cross-validation can also be explored using the 
discriminant-analysis approach. 94.3 % were correctly 
classified for location-of-origin sample training and 71.7 
% correctly classified for brand using training samples. 
The cross-validation confusion matrix yielded results 
that were 94.3% correctly classified for location and 
41.5% correctly classified for brand by using 100 
samples as training data.; this means that the distribution 
of observational data for location is more scattered than 
that of brands, which is more converge and overlapping 
(Table 3). 
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Fig. 4. Discriminant analysis (DA) plot for location of 
the training data samples. 
 

3.3 Classification and regression tree (CART) machine 

learning 

 Machine learning uses algorithms like supervised 
learning and unsupervised to identify patterns in training 
and test data to predict variables [22]. Classification and 
regression tree (CART) machine learning belongs to the 
family of supervised machine-learning algorithms [23].
In this analysis, the origin locations and brands of 
unknown gasoline samples can be determined based on 
the uniqueness of the newly targeted compound 
chromatograms using fifty-three training datasets. 
CART is based on a “divide-and-conquer” strategy 
whereby training data are subdivided into an 
increasingly pure and homogenous subset; the 
mathematical algorithm will therefore use six TCCs and 
six retention-time TCCs as possible predictors to obtain 
the key predictors to determine the locations or brands 
of unknown gasoline. Such primary predictors are at the 
top of the chart and are known as roots. The fractions of 
these main predictors are known as nodes or branches. 
Depending on the algorithm, nodes will end early and 
will most likely form new nodes below.  
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Fig. 5. Centroids plot for brand of the training data samples.
 
Table 3. Confusion matrix for the cross
all unknown gasoline samples location and brand by the 
CART models in the present study

from \ to Total
JOHOR 4 

KERTEH 
REFINERY 10 

KUALA LUMPUR 5 
MALACCA 5 
PAHANG 5 
PENANG 5 
PERAK 5 

SELANGOR 8 
TERENGGANU 6 

Total 53 

18-1CB18-5CB

20-5 C1

20-8 C4

20-17 W3

20-20 

20-29 TR10

20-32 M3
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20-11 P2
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20
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Centroids plot for brand of the training data samples. 

Confusion matrix for the cross-validation results of 
all unknown gasoline samples location and brand by the 
CART models in the present study 

Total % correct 
 50.00% 
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 100.00% 
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 100.00% 
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22 TR324 TR5

20-26 TR7

2 3 4 5
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from \ to Total % correct 

C 8 0.00% 

P 25 40.00% 

S 20 60.00% 

Total 53 41.51% 

 

If there is no node beneath the last node, it is referred to 
as a terminal node or leaf. 
Referring to Table 4, a total of 100 unknown samples of 
gasoline were used to validate the CART model for 
prediction of location and brand. Nine samples were 
also to be used as validation samples. It is evident that 
the prediction standard deviation approaches the value 
of 0, indicating that the data are concentrated around the 
mean. The range of minimum and maximum values for 
training data and prediction data is comparable, with -
4.9 to 4.7 for training data and -4.9 to 4.8 for prediction 
data, respectively. By using the CART method together 
with the GINI size mode, as many as 11 nodes and 8 
rules will be generated with branches of three layers; 
this is in contrast to the CART model of the brand, 
whereby only 8 9 nodes and 6 rules with 8 layers of 
branches (Fig. 6) are produced. In decision tree 
construction, the principle of purity is determined by the 
proportion of the group's data elements that belong to 
the subset. The maximum percentage of purity in this 
study indicates that the rules in each node make accurate 
predictions. For example, 15.1% of training samples for 
node number 3 conform to the following algorithm 
rules: p-xylene > 1.10906, and brand P is the only 
comparable brand. This demonstrates that the 
classification at the end of this tree is one hundred 
percent pure. 
Similarly, as seen on the CART figure for location 
prediction, only nodes 9 and 10, which are located in 
Malacca and Kerteh, have a purity of 100 percent (Fig. 
7). When interpreted based on main-location predictors, 
retention time dominates the key predictors for brand 
models; this shows that each model differs depending 
on the algorithm built by the key predictor. Mean 
Absolute Error (MAE) scores are preferable the lower 
they are. This is due to the fact that MAE is a measure 
of the average error between predictions and intended 
targets, and we wish to minimise this value. The MAE 
for this study of the training data set was 1.1 (location) 
and 0.4 (brand), and the accuracy of the estimator was 
unaffected by modifications to the training data set. This 
study demonstrates that this method is ideally suited for 

use as Gonzalez et al. (2021) [24] did, utilising 243 
unknown training data gasoline and achieving an MAE 
of 0.90 for their RON prediction model. Although the 
two models had different rules, the locations of origin 
and the brands of all nine validation samples and 100 
unknown gasoline samples could be predicted. 
 
4. Conclusion 
In conclusion, by changing the targeted compound 
chromatograms used as determining factors for the 
presence of gasoline such that they are appropriate to 
Malaysia, the brands and locations of origin of gasoline 
could be successfully determined using chemometric 
analysis and machine learning. For further studies, the 
addition of higher-volume data and certain other 
prediction factors—such as post-burning debris after 
exposure to weather, post-burning-debris sample 
duration, and exposure of debris to different 
environmental conditions—may be taken into account 
to achieve more comprehensive results for real case 
samples. 
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