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1. Introduction 

 

Nanotechnology introduces new solutions towards 
the growth of present technologies and in these 
solutions, issues such as health, environmental, and 
economic problems are touched [1-3]. There are 
environmental concerns all over the world. One of the 
most important issues in life is water treatment. There 
are various pollutants in water, among which organic 
contaminants have serious dangers [4–6]. Adjustable 
size and new mechanisms are the characteristics of 
nanoparticles, and these properties indicate promising 
technology. Therefore, under ultraviolet radiation, they 
are used as photocatalysts to eliminate the organic 
contaminants such as dyes [7, 8]. Nanocomposites have 
at least one component in nanometer dimensions [9]. 
Nanocomposites are appropriate alternatives to reduce 
the limitations of microcomposites, whereas posing 
procurement for controlling the primary combination 

and stoichiometry within the nano cluster phase. They 
are posed to the preparation challenges due to their 
unique design and possession compositions that are not 
found in conventional materials. Nanocomposites have 
been introduced as materials from the twenty- first 
century. Although the first inference to them was 
reported in the beginning of 1992 [10], a popular 
conception of their properties has not still been obtained 
[11]. Organic dyes are colored and durable compounds 
and are extensively utilized in industrial manufacture of 
dying agents, textile, leather, paint, clothing, rubber, 
biological imaging, plastic paper making and food 
processes etc due to the utilizing a large volume of 
organic dyes are causing damage to human lungs, 
kidneys, organs and carcinogenic effects. The most 
common organic dyes are EBT, MO, MG, Congo red 
(CR), MB, and so on [12]. Many paper and waste 
industries as well as textile mills have discharged waste-
polluted water containing hazardous contaminants into 
water bodies, which has resulted in serious 
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contamination of water [13]. The entry of these 
industries' wastewater to the environment affects living 
organisms in aquatic ecosystems and human health [14]. 
As a result, purification of dye-polluted wastewaters via 
decontamination process is essential before their 
evacuation. The depletion of large values of dyes into 
wastewater is a serious threat for environmental 
sustainability and human health [15]. As a result, in 
aquatic ecosystems, the process of photosynthesis is 
affected. Also, due to the association of organic dyes in 
water with jaundice, cancer, skin stimulation, 
sensitivity, heart defects, and mutation, they have 
dangerous and toxic effects on human health [16]. Thus, 
to eliminate these organic dyes and to expand robust, 
economic, and environmentally sociable procedures, it 
is necessary to use a variety of techniques such as 
physicochemical [17, 18], chemical [19],  biological 
[20], electrochemical [14] and advanced oxidation 
process-based approaches such as photo-Fenton’s 
oxidation and Fenton's reagent systems to remove dyes 
from water. The production of strong radical 
components causes rapid decomposition of dyes [21-
23]. Researchers have done many studies in the 
direction of wastewater decolorization [5, 24, 25]. In 
this field, metal oxides have been employed to 
decompose organic pollutants in water to reduce 
hazardous materials [26].  

In this study, La2MnFe2O7 and La2CuFe2O7 magnetic 
nanocomposites were synthesized for the first time. 
These nanocomposites were synthesized using co-
precipitation method and characterized through FTIR, 
TEM, DRS, XRD and VSM analyses. The 
photocatalytic activity of the synthesized 
nanocomposites was studied using MV, MG and EBT 
dyes as organic pollutant for the first time. 

.  
2. Experimental details 

2.1. Methods and materials 

 

Fe(NO3)3.9H2O, NaOH, LaCl3.7H2O, CuCl2.6H2O, 
MnCl2.2H2O, Co(NO3)2.6H2O as well as octanoic acid 
were purchased from Merck corporation. FT-IR spectra 
were recorded using Rayleigh (WQF-510A) FTIR 
spectrophotometer. A Philips X-ray diffractometer with 
Ni-filtered CuKα radiation was used for performing the 
X-ray diffraction measurements. The magnetic 
susceptibility measurements were performed via VSM 
(made by Meghnatis Daghigh Kavir Company, Kashan, 
Iran) at the applied sweeping magnetic field of ± 10,000 
Oe. Zeiss-EM10C-100 kV was used to take the TEM 
images. An ultrasonic irradiance was accomplished 

using a multi-purpose ultrasonic generatrix (BandLine 
MS 73), equipped with a transformer and titanium 
oscillator, operated at 20 kHz with an almost 150 W 
power output. The registration of absorption spectra was 
done by a Perkin-Elmer LAMBDA45 UV/Vis 
spectrophotometer. 
 

2.2. Synthesis of La2MnFe2O7 and La2CuFe2O7 

nanocomposites 

 

Three separate solutions were obtained by dissolving 
0.01 mole of LaCl3.7H2O, MnCl2.2H2O (or 
CuCl2.6H2O) and Fe(NO3)3.9H2O in 10 ml of distilled 
water. The prepared solutions in the previous step were 
mixed together, and 2 mL of octanoic acid added 
gradually as surfactant. Afterwards, the solution was 
stirred vigorously and NaOH 5 M solution added 
dropwise until the solution pH reached 8-9. After the 
complete precipitation, the solution was sonicated. The 
crystalline phase of nano-particles was obtained after 30 
min/30 ºC in 150 W and 20 kHz sonication. The white 
precipitate from sonication was purified and calcinated 
for 2 hours at 800 ºC for removing the organic residue. 
The nanoparticles obtained by sonication has the highest 
purity. 
 

2.3. Photocatalytic activity for degradation of dyes 

 
To perform photocatalytic experiments, 10 mL of 

MV, MG and EBT aqueous solutions (0.001 M) were 
separately added to 20 mg of La2MnFe2O7 and 

La2CuFe2O7 nanocomposites. The suspension was 
magnetically stirred for 30 min in dark before 
irradiation. Afterward, the mixture was illuminated with 
UV light for one hour. These lamps were located around 
the outer level of the mixture. The effects of some 
factors such as temperature, solution pH, dyes’ 
concentration, photocatalysts’ amount as well as 
irradiation time were examined and optimized. At last, 
the reaction mixture was filtered, and the UV-Vis 
analysis performed to determine the residual 
concentration of MV, MG as well as EBT dyes. The 
residual adsorption of MV, MG and EBT by 
La2MnFe2O7 nano-composite in several catalyst doses is 
shown in Fig. 1.  

 

 
 
 

 



 

 

 

Fig. 1. UV-Vis absorption spectra of MV (up), MG (center) and EBT(down) with La

 
 

Chem Rev Lett 7 (2024) 123-133 

125 

 
 

 

 
Vis absorption spectra of MV (up), MG (center) and EBT(down) with La2CuFe2O7 nanoparticles after a 0.0, b 20, c 30 

and d 60 min, UV light irradiation. 

 

 

nanoparticles after a 0.0, b 20, c 30 



 

 

3. Result and discussion 

3.1. Characterization 

 
TEM, FT-IR, XRD, DRS and VSM techniques were 

utilized for the characterization of La2MnFe
La2CuFe2O7 nanocomposites. The phase and 
crystallinity of the synthesized catalysts were 
determined by XRD. The FT-IR spectra were recorded 
within the scan range of 4000-400 cm
transmission electron microscopy images were used to 
determine the morphologies of the as
nanomaterials. The magnetic properties of the 
synthesized catalysts were investigated using VSM
Band gap energy is determined using DRS. 

The optical property of the prepared 
and La2CuFe2O7 nanocomposites was studied by a UV
Vis spectrophotometer. The absorbance spectra were 
obtained within the range of 200-600 nm. 

 
3.1.1. FTIR analysis of La2MnFe

La2CuFe2O7 nanocomposites 

 

Fig. 2 shows the FT-IR spectra of octanoic acid (a), 
La2MnFe2O7 (b), as well as La2CuFe2O
composites following calcination within the range of 
400-4000 cm-1. As shown, the broad band in 2650
cm-1 was associated with the O–H stretching vibration in 
the octanoic acid, whereas the band appeared in 1718 
cm-1 is associated with the carbonyl group. The bending 
vibrations of CH2 and CH3 groups are observed at 1461 
and 1381 cm-1, respectively. The stretching band of C
was observed at 1220–1330 cm-1 and the out of plane 
bending of O–H group was observed at 941 cm
two robust absorptive bands around 800 and 900 cm
respectively, were associated with the M–
vibration (M: metal) of La2MnFe2O
La2CuFe2O7 (c). However, those around 550 and 650 
cm-1, respectively, were associated with the M
bending vibration (M: metal) of La2MnFe
La2CuFe2O7 (c). As a result, there was a similarity 
between the FT-IR spectra of the samples and they were 
consistent with those reported in the literature [27].

 
3.1.2. XRD analysis of La2MnFe

La2CuFe2O7 nanocomposites 

 

XRD patterns of the prepared photocatalysts are 
exhibited in Figs. 3 and 4. The XRD analysis of 
La2MnFe2O7 shows that it was possible to index the 
diffraction peaks to the Cubic phase (a=
b=8.499 Å, and c= 8.499Å) of La2O3 JCPDS card 22
0641N (Fig. 3) and monoclinic phase (a= 14.60000 Å, 
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XRD patterns of the prepared photocatalysts are 
exhibited in Figs. 3 and 4. The XRD analysis of 

shows that it was possible to index the 
diffraction peaks to the Cubic phase (a=8.499 Å, 

JCPDS card 22-
phase (a= 14.60000 Å, 

b=3.71700  Å and c=9.27800 
card No. 04-016-1572) with the main peak diffraction at 
d= 2.72 Å (311 plane). XRD analysis of La
shows that the cubic phase (a=8.3490 
and c=8.3490 Å) is CuFe2O4, JCPDS No 25
4), and the monoclinic phase (
b=3.7170 Å , and c=9.27800 Å
main diffraction peak at d = 2.96 
crystallite size was determined by Debye
formula: 
      

� �
�χ

����	
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Where K (=0.89) signifies the shape factor, 

wavelength, β signifies the full width at half maximum 
(FWHM), and θ signifies the Bragg scattering angle 
[28]. The mean crystallite size was computed from the 
main characteristic peak of each phase,
30.8° for La2O3, (311) located a
(022) located at 30.18° for CuFe
that for La2MnFe2O7 nanocomposite, the crystallite size 
of La2O3 nanoparticles (8.7 nm) is significantly smaller
than MnFe2O4 (15.77 nm). 
nanocomposite, the crystallite size of La
nanoparticles (8.7 nm) is significantly smaller than 
CuFe2O4 (13.03 nm). 

It was found that the crystallite size did not change 
dramatically with the nature of transition metal, 
15.77 and 13.03 nm for La2O3

La2CuFe2O7, MnFe2O4, and CuFe

 
Fig. 2. FT-IR spectra of octanoic acid (a), La

and LaMnFe2O (c) nanoparticles

and c=9.27800 Å) of MeFe2O4 (JCPDS 
72) with the main peak diffraction at 

(311 plane). XRD analysis of La2CuFe2O7 
a=8.3490 Å, b=8.3490 Å, 
, JCPDS No 25-0283 (Fig. 

4), and the monoclinic phase (a=14.60000 Å, 
Å) is La2O3 (22-064) with a 

main diffraction peak at d = 2.96 Å ((022) plane). The 
crystallite size was determined by Debye- Scherrer 

(=0.89) signifies the shape factor, λ is the 
signifies the full width at half maximum 

signifies the Bragg scattering angle 
[28]. The mean crystallite size was computed from the 
main characteristic peak of each phase, (011) located at 

) located at 35.5° for MnFe2O4 and 
° for CuFe2O4. The results show 

nanocomposite, the crystallite size 
nanoparticles (8.7 nm) is significantly smaller 

(15.77 nm). also for La2CuFe2O7  
nanocomposite, the crystallite size of La2O3 

nanoparticles (8.7 nm) is significantly smaller than 

It was found that the crystallite size did not change 
dramatically with the nature of transition metal, 8.7, 8.7, 

3 in La2MnFe2O7, La2O3 in 
, and CuFe2O4 respectively. 

 

IR spectra of octanoic acid (a), La2CuFe2O7 (b) 
(c) nanoparticles. 



 

 

  
Fig. 3. XRD pattern of La2MnFe2O7 nanoparticles

 

 
Fig. 4. XRD pattern of La2CuFe2O7 nanoparticles

 
3.1.3. TEM analysis of La2MnFe

La2CuFe2O7 

 

TEM images of La2MnFe2O7 and La2

shown in Fig. 5. According to the TEM images,
La2MnFe2O7 and La2CuFe2O7 catalysts are nanosized 
with a grain size of 20 nm, respectively. Nanoparticles 
possess a porous structure with a high specific area. 
These nanoparticles form many active positions on the 
surfaces. This kind of morphology with high specific 
area may enable more possibility to give an excellent 
host material for inserting and abstracting guest ions for 
the sake of identifying area-dependent level reactivity, 
and for taking action as molecular sieves [29].
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Fig. 5. TEM images of La2CuFe
nanocomposites

 
3.1.4. DRS spectrum analysis of 

La2CuFe2O7 nanocomposites

 
Fig. 6 shows the graph of (α

from the UV-Vis DRS spectrum of 
La2CuFe2O7 nanocomposites. The corresponding band 
gap energy can be determined from the following 
equation: 

��     � �
�υ����
�
�             

 
For direct electron transfer, A is a constant number. 

Eg and hν are the energy of the direct band gap and the 
energy of the incident photon, respectively. The energy 
of the band gap is estimated to zero from the graph of 
(αhν)2 versus hν by extrapolating the linear part (
As shown in Fig. 6, the optical band gap of
and La2CuFe2O7 is about 2.8 ev, which is 
with those reported in the literature [30, 31].

Fig. 6. The (αhν) 2 versus hν plot derived from the UV
DRS spectrum of pure La2CuFe

composites

CuFe2O7 (a) and La2MnFe2O7 (b) 
anocomposites. 

nalysis of La2MnFe2O7 and 

anocomposites 

Fig. 6 shows the graph of (αhν)2 versus hν obtained 
Vis DRS spectrum of La2MnFe2O7 and 

nanocomposites. The corresponding band 
energy can be determined from the following 

                                        
2�  
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 by extrapolating the linear part (αhν)2. 

As shown in Fig. 6, the optical band gap of La2MnFe2O7 

is about 2.8 ev, which is consistent 
with those reported in the literature [30, 31]. 

 
ν plot derived from the UV–Vis 

CuFe2O7 and LaMnFe2O 
composites. 



 

 

3.1.5. Magnetic behavior of La2MnFe

La2CuFe2O7 

 
Further elucidation on the room temperature 

magnetic hysteresis loops of La2MnFe
La2CuFe2O7 nanocomposites are presented in Fig. 7. 
The coercivity and saturation magnetization of
La2MnFe2O7 were measured to be 1200 Oe and 14.8 
emu/g, respectively (Fig. 7a). The saturation 
magnetization of La2CuFe2O7 was 0.79 emu and its 
coercion was almost 100 Oe (Fig. 7b) that was smaller, 
compared to that of La2MnFe2O7. These two catalysts 
show ferromagnetic properties [32, 33]. 
 

 
Fig. 7. Room temperature hysteresis loop of La

and La2CuFe2O7 (b) nanocomposites
 

3.2. Photodegradation of MV, MG, and EBT 

 

The degradation of MV, MG, and EBT dyes was 
monitored to investigate photocatalytic activity of the 
nanocomposites. Some factors like the solution pH, 
temperature, dye concentration, catalyst amount, and 
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3.2. Photodegradation of MV, MG, and EBT dyes 

The degradation of MV, MG, and EBT dyes was 
monitored to investigate photocatalytic activity of the 
nanocomposites. Some factors like the solution pH, 
temperature, dye concentration, catalyst amount, and 

irradiation time affect the optical decomposition of
MV, and EBT which are shown in Fig. 8a
 

3.2.1. Effect of temperature

 

Fig. 8a reveals that temperature has a large effect on 
optical decomposition of MV
improve the photocatalytic effect
raised from 25 to 40 C̊. With increase in temperature, 
the motion of dye ions increases. Thus, there was an 
increase in the penetration of MV, MG, and EBT ions 
and in the number of absorption sites after the inner 
structure was inflamed [34]. 
 

3.2.2. Effect of MV, MG, and EBT 

concentrations 
 

Fig. 8b shows the impact of the concentration of 
initial MV, MG, and EBT dyes upon their optical 
decomposition using La2MnFe
mg/L) nanoparticles as absorbent. According to Fig. 8b, 
with an increase in the initial concentrations of MV, 
MG, and EBT from 1.32 to 5.28 M, the percentage of 
MV photodegradation using 
La2CuFe2O7 reduced from 79% to 42% and 76% to 
38%, respectively. For MG dye, photodegradation 
decreased from 72% to 36% and from 65% to 32% in 
the presence of La2MnFe
respectively. This photodegradation decrease for EBT 
dye was from 68% to 32% and from 65% to 33% using 
La2MnFe2O7 and La2CuFe
respectively. As the number of color molecules 
increased, there was a reduction in the ratio of the 
number of vacant sites on the surface of the catalysts to 
the color molecules. Thus, the entire MG, MV and EBT 
molecules were available at low concentrations with 
accessible locations on the surface of nanoparticles. 
With increase in the initial concentrations of dyes, 
active regions of the absorbent surfaces are saturated 
and photodegradation percent reduces [35, 36].
 

3.2.3. Effect of the initial pH
 

As shown in Fig. 8c, when the pH of solution 
increased, there was an increase in the photodegradation 
percentage of MG and MV. With increasing pH, there 
was a dissociation of functional groups on the 
adsorption surface, and there was an e
attraction between the positively charged functional 
groups of dyes and the negatively charged groups on the 
surface. As a result, the optical disintegration of the dye 
increases [36]. 

irradiation time affect the optical decomposition of MG, 
MV, and EBT which are shown in Fig. 8a-e. 
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f the initial pH 

As shown in Fig. 8c, when the pH of solution 
increased, there was an increase in the photodegradation 
percentage of MG and MV. With increasing pH, there 
was a dissociation of functional groups on the 
adsorption surface, and there was an electrostatic 
attraction between the positively charged functional 
groups of dyes and the negatively charged groups on the 
surface. As a result, the optical disintegration of the dye 
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3.2.4. Effect of irradiation time 
 

The irradiation time impact on the MG and MV 
photodegradation using La2MnFe2O7 and La2CuFe2O7 (2 
mg/L) as absorbents is demonstrated in Fig. 8d  . The rate 
of photodegradation on nanocomposites was increased 
with an increase in irradiation time up to 60 mins. The 
maximum value of adhesion occurred at 60 min. 
Moreover, the impact of increasing time on 
photodegradation was not considerable because in the 
early stage of sorption, there were many vacant surface 
areas for the dye molecules, but the occupied areas 
started excreting the absorbing molecules in the solvent 
phase and in the case of absorbing molecules, to achieve 
the empty surface areas, the existing stimulatory forces 
were weakened. Thus, the sorption was decreased [37]. 
 

3.2.5. Effect of catalyst amount 
 

As demonstrated in Fig. 8e, the photodegradation 
percentages of MG and MV are enhanced with an 
increase in the amount of La2MnFe2O7 and La2CuFe2O7 
nanocomposites from 2.0 to 8.0 mg/L. With an increase 
in the catalyst value, the upper area of nanocomposites 
increases and La2MnFe2O7 nanocomposites adsorb more 
photons on their surface, compared to La2CuFe2O7. As a 
result, the absorption of dye molecules on the 
nanocatalyst surfaces increases and the 
photodegradation of MG and MV increases [38, 39]. 

 
3.2.6. Mechanism of photocatalytic degradation of 

MG, MV and EBT dyes  

 
The mechanism of photocatalytic degradation of 

dyes under UV radiations is illustrated in Fig. 9. When 
UV rays excite electrons in the valence band, they 
transfer to the conduction band, resulting in holes in 
valence band, and electrons conduction band. Then they 
produced oxygen anion free radicals (O2.-) and hydroxyl 
free radicals (OH.), respectively. Hydrogen peroxide 
increases the amount of free hydroxyl radicals. 
Therefore, this addition improves the catalytic 
efficiency of dye degradation [40]. 

 
4. Conclusions 

 
In this work, La2MnFe2O7 and La2CuFe2O7 

nanocomposites were successfully prepared using a co-
precipitation method, and characterized on the basis of 
FT-IR, XRD, TEM, VSM and DRS analyses. The 
catalytic activity of the prepared nanocomposites in the 
degradation of industrial dyes (MG and MV) was 

investigated under the optimized conditions such as 
temperature (30 ºC), catalyst amount (2.0 mg/L), 
irradiation time (60 min), dye concentration (1.59 ×10-3 
M), pH (=7), and compared with each other. The present 
study can be a growth path for the development of 
photocatalytic technology, especially the recyclable 
magnetic photocatalysts for wastewater treatment. 

Table 1 shows the performance of several 
synthesized photocatalysts with their experimental data 
[41-45]. As clarified in Table 1, the photocatalytic 
degradation of malachite green dye using the 
La2CuFe2O7 and LaMnFe2O composites has been 
compared with that of other photocatalysts reported in 
the literature. The results showed that La2CuFe2O7 and 
LaMnFe2O nanocomposites are superior to other 
catalysts for rapid and significant degradation of MG, 
MV and EBT dyes. 

The results of photocatalytic activity of La2MnFe2O7 
and La2CuFe2O7 nanocomposites approved the effects 
of both photocatalysts upon the decomposition of MV, 
MG and EBT dyes. However, La2MnFe2O7 
nanoparticles showed significant degradation. 
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Fig 8. The effects of a temperature, b dye concentration, c 
pH, d irradiation time, and e catalyst dose on 
photodegradation of MV, MG and EBT (1.59× 10-3 M) by of 
La2MnFe2O7 and La2CuFe2O7 nanocomposites (2 mg/L) at pH 
= 7, t = 30 ºC and irradiation time = 60 min (The expressed 
constant values of the parameters are related to the curves that 
the parameter is not investigated in it). 
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Fig. 9. A possible mechanism for the degradation of dye on the nanoparticles under UV-light irradiation. 
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Table 1. Degradation performance comparison of MG, MV and EBT dyes by various photocatalysts under UV irradiation. 
 

No. Catalysts Target Degration (%) Ref 
1 Ce-B/TiO2 MG 90 (120 min) [41] 

2 Fe3O4/ SiO2/TiO2 MG 100 (150 min) [42] 

3 CeO2 nanoparticles EBT 99.23 (120 min) [43] 

4 ZnO MV 99.0 (75 min) [44] 

5 ZnS, ZnS:Fe MV 91.4/98.8 (120 min) [45] 

6 La2MnFe2O7 MV, MG, EBT 99 MV (60 min), 91 MG 
(60 min), EBT 90 (60 min) 

This work 

7 La2CuFe2O7 MV, MG, EBT 96 MV (60 min), 87 MG 
(60 min), 85 EBT (60 min) 

This work 
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