Variation in the phytochemical composition of Chromolaena odorata (L.) King and Robinson (Asteraceae) across climatic zones in Benin (West Africa)

Document Type : Research Article


1 Unité de Recherche en Malherbologie et Phytopharmacie, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 01 BP : 526, Cotonou (Bénin)

2 Laboratoire de Pharmacognosie et des huiles Essentielles, Faculté des Sciences et Techniques, université d’Abomey-Calavi, 01 BP : 918 ISBA Cotonou (Bénin)

3 Laboratoire de Chimie Organique, Physique et de Synthèse, Faculté des Sciences et Techniques, Université d’Abomey-Calavi, 01 BP : 4521 Cotonou (Bénin)

4 Unité de Gestion Intégrée des Sols et des Cultures, Laboratoire des Sciences du Sol, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Cotonou (Bénin)


Chromolaena odorata (L.) King and Robinson (Asteraceae) is a tropical shrub with interesting chemical potential widely used in agriculture and medical science and which can be affected by several geographic and climatic conditions. Therefore, we investigated the phytochemical composition of this plant across climatic zones in Benin. The plant material collected from different locations was phytochemically screened by staining and precipitation tests. The total phenolic, flavonoid and tannin contents were determined using, the colorimetric method of Folin-Ciocalteu, the method of aluminum chloride and the method of vanillin, respectively, then the obtained data were subjected to analysis of variance. The phytochemical analysis revealed the presence of the main chemical groups such as alkaloids, free anthracene, coumarins, flavonoids, mucilage, tannins, reducing compounds, saponins, quinone derivatives, steroids. There was a significant difference (P < 0.05) in the phytochemical contents across geographical sites. In comparing the levels of phytochemicals among geographical locations, the raw material collected from the north climatic zone contained the highest phenolic and flavonoid contents, 147.59 ± 3.04 mg/g and 17.17 ±0.31 mg/g, respectively, compared to others. Overall, the study highlighted the potential of C. odorata as source of natural products. There was no difference in the phytochemical markers whereas the phytochemical contents vary across climatic zones. These results can be of use in the development of biopesticides from the raw material of C. odorata.


Main Subjects

  1. Zachariades, M. Day, R. Muniappan, G. V. P. Reddy, Chromolaena odorata (L.) king and robinson (Asteraceae). In: Muniappan R, Reddy GVP, Raman A, editors. Biological control of tropical weeds using arthropods, Cambridge University Press, Cambridge (2009) 130-62.
  2. Mugwedi, Harnessing opportunities provided by the Invasive Chromolaena odorata to keep It under control. Sustainability, 12 (2020) 6505.
  3. L. Rice, Allelopathy. 2nd ed. Academic press, New York (1984).
  4. Bachheti, A. Sharma, R. Bachheti, A. Husen, D. Pandey, Plant Allelochemicals and Their Various Applications. In: Mérillon J-M, Ramawat K, editors. Co-Evolution of Secondary Metabolites, Springer Nature, Switzerland (2020) 441-65.
  5. Bozorgian, Methods of Predicting Hydrates Formation, Advanced Journal of Science and Engineering, 1 (2020), 34-39.
  6. G. Omokhua, L. J. McGaw, J. C. Chukwujekwu, J. F. Finnie, J. Van Staden, A comparison of the antimicrobial activity and in vitro toxicity of a medicinally useful biotype of invasive Chromolaena odorata (Asteraceae) with a biotype not used in traditional medicine. South Afr. J. Bot., 108 (2017) 200-8.
  7. Wink, Evolution of the angiosperms and co-evolution of secondary metabolites, especially of Alkaloids. In: Mérillon J-M, Ramawat KG, editors. Reference Series in Phytochemistry Co-Evolution of Secondary Metabolites, Springer Nature, Cham, Switzerland (2020). p. 151-74.
  8. Bagheri Sadr, A. Bozorgian, An Overview of Gas Overflow in Gaseous Hydrates, Journal of Chemical Reviews, 3 (2021), 66-82.
  9. Cheng, Z. Cheng, Corrigendum: Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci., 7 (2016) 1697.
  10. Bozorgian, Investigation of the effect of Zinc Oxide Nano-particles and Cationic Surfactants on Carbon Dioxide Storage capacity, Advanced Journal of Chemistry, Section B: Natural Products and Medical Chemistry, 3 (2021) 54-61.
  11. Dandjlessa, N. Zossou, B. Ezin, A. Djenontin, F. Kouelo Alladassi, A. Ahanchede, Effet du thé de compost de Chromoleana odorata L. sur le développement des mauvaises herbes de cultures. Int. J. Biol. Chem. Sci., 13 (2019) 2657-65.
  12. Touré, B. Kouamé, G. Bedi, A. Joseph, N. Guessennd, R. Oussou, J. C. Chalchat, M. Dosso, F. Tonzibo, Effect of geographical location and antibacterial activities of essential oils from Ivoirian Chromolaena odorata (L) RM King & Robinson (Asteraceae). J. Pharmacogn. Phytother., 6 (2014) 70-8.
  13. Aboukhalid, C. Al Faiz, A. Douaik, M. Bakha, K. Kursa, M. Agacka‐Mołdoch, N. Machon, F. Tomi, A. Lamiri, Influence of environmental factors on essential oil variability in Origanum compactum Benth. growing wild in Morocco. Chem. biodivers., 14 (2017) e1700158.
  14. C. Evans, D. Evans, Chapter 14 - Phytochemical variation within a species. In: Evans WC, Evans D, editors. Trease and Evans' Pharmacognosy 16 ed, Elsevier, Amsterdam, The Netherlands (2009). p. 106-16.
  15. Dandjlessa, B. Ezin, N. Zossou, A. Ahanchede, Mapping actual distribution of invasive species siam weed and its abundance across biogeographical zones in Benin (West Africa). Adv. Weed Sci., 39 (2021).
  16. Samimi, S. Zarinabadi, A. Bozorgian, Optimization of Corrosion Information in Oil and Gas Wells Using Electrochemical Experiments, International Journal of New Chemistry, 8 (2021) 149-163.
  17. Avlessi, A. G. Alitonou, T. S. Djenontin, F. Tchobo, B. Yehouenou, C. Menut, D. Sohounloue, Chemical composition and biological activities of the essential oil extracted from the fresh leaves of Chromolaena odorata (L. Robinson) growing in Benin. ISCA J. Biol. Sci., 1 (2012) 7-13.
  18. -P. Noudogbessi, D. Kossou, D. C. K. Sohounhloué, Composition chimique et propriétés physico-chimiques des huiles essentielles de Pimenta racemosa (Miller) et de Chromolaena odorata (L. Robinson) acclimatées au Bénin. J. Soc. Ouest-Afr. Chim., 26 (2008) 11-9.
  19. Kossouoh, M. Moudachirou, V. Adjakidje, J.-C. Chalchat, G. Figuérédo, P. Chalard, Volatile constituents of Chromolaena odorata (L.) RM King & H. Rob. leaves from Benin. J. Essent. Oil Bear. Plants, 14 (2011) 224-8.
  20. Usunomena, E. G. Efosa, Phytochemical analysis, mineral composition and in vitro antioxidant activities of Chromolaena odorata leaves. ARC J. Pharm. Sci., 2 (2016) 16-20.
  21. Bozorgian, Analysis and simulating recuperator impact on the thermodynamic performance of the combined water-ammonia cycle, Progress in Chemical and Biochemical Research, 3 (2020) 169-179.
  22. O. Ajani, S. Sabiu, F. A. Bamisyae, N. O. Ismaila, O. S. Abdulsalam, Lens Aldose Reductase Inhibitory and Free Radical Scavenging Activity of Fractions of Chromolaena odorata (Siam Weed): Potential for Cataract Remediation. Not. Sci. Biol., 8 (2016) 263-71.
  23. Ghasemzadeh, H. Z. Jaafar, M. F. M. Bukhori, M. H. Rahmat, A. Rahmat, Assessment and comparison of phytochemical constituents and biological activities of bitter bean (Parkia speciosa Hassk.) collected from different locations in Malaysia. Chem. Cent. J., 12 (2018) 1-9.
  24. Mashhadizadeh, A. Bozorgian, A. Azimi, Investigation of the kinetics of formation of Clatrit-like dual hydrates TBAC in the presence of CTAB, Eurasian Chemical Communication, 2 (2020) 536-547.
  25. Irakli, A. Kargiotidou, E. Tigka, D. Beslemes, M. Fournomiti, C. Pankou, K. Stavroula, N. Tsivelika, D. N. Vlachostergios, Genotypic and environmental effect on the concentration of phytochemical contents of lentil (Lens culinaris L.). Agronomy, 11 (2021) 1154.
  26. Biondi, F. Balducci, F. Capocasa, M. Visciglio, E. Mei, M. Vagnoni, B. Mezzetti, L. Mazzoni, Environmental conditions and agronomical factors influencing the levels of phytochemicals in Brassica vegetables responsible for nutritional and sensorial properties. Appl. Sci., 11 (2021) 1927.
  27. Barbouchi, K. Elamrani, M. El Idrissi, A comparative study on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L. J. King Saud Univ. Sci., 32 (2020) 302-6.
  28. Hayat, M. Akodad, A. Moumen, M. Baghour, A. Skalli, S. Ezrari, S. Belmalha, Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco. Heliyon, 6 (2020) e05609.
  29. J. Houghton, A. Raman, Methods for extraction and sample clean-up. Laboratory handbook for the fractionation of natural extracts, Springer, (1998). p. 22-53.
  30. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
  • Receive Date: 24 November 2021
  • Revise Date: 15 April 2022
  • Accept Date: 04 May 2022
  • First Publish Date: 04 May 2022