Biochemical Properties Evaluation of some Libyan dates

Document Type : Research Article

Authors

1 Chemistry Department, Faculty of Science, University of Benghazi

2 Department of Nutrition, Faculty of Medical Technology, Misurata, Libya

Abstract

The current research targeted to estimate total sugars, fats, proteins, phenols, and antioxidant activity of ethanolic extract of five date varieties (al-Tabouni (TAB), al-Bakrari (BAK), al-Aami (AAM), al-Hamouri (HAM), and al-daqla (DAQ)) available in Libya. Also, phytochemical screening for ethanolic and aqueous extracts were performed. In general, the two extracts were rich in carbohydrates, proteins, phenols, flavonoids, alkaloids, and glycosides. However, steroids didn’t exist in aqueous extract and saponins in both extracts. Total sugars were estimated by spectrophotometric methods, the proteins using the Kjeldahl method, and fats by the Soxhlet device, and their percent were ranged between 49 - 66%, 1.43 - 2.25, 0.10 - 0.25% (w/w) for sugars, proteins and fats, respectively. The total phenols were also estimated using the Folin reagent method, where the results are expressed as mg (gallic acid equivalent) per g (extract) and ranged from 13.5 to 20.5 mg/g, and the highest level was in the DAQ variety. The DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging method was also used to estimate total antioxidants where the two largest levels were found in the DAQ and HAM varieties with concentrations of 10.68 and 10.63 mg (ascorbic equivalent)/g (extract), respectively. DAQ extract has reduced the 50% of DPPH at lower concentration of 0.110 mg/ml (IC50). Furthermore, good positive correlation was found between total phenols and DDPH in ethanolic extract.

Keywords

Main Subjects


  • M. Al-Shayeb, M. A. Al-Rajhi and M. R. D. Seaward, The Date Palm (Phoenix Dactylifera L.) as a Biomonitor of Lead and Other Elements in Arid Environments. Sci. Total Environ., 168 (1995) 1-10.
  • K. Yousif, N. D. Benjamin, A. Kado, S. M. Alddin and S. M. Ali, Chemical Composition of Four Iraqi Date Cultivars. Date Palm J., 1 (1982) 285-294.
  • N. Sawaya, H. A. Khatchadourian, J. K. Khalil, W. M. Safi and A. Al-Shalhat, Growth and Compositional Changes during the Various Development Stages of Some Saudi Arabian Date Cultivars. J. Food Sci., 47 (1982) 1489-1497.
  • R. Williams and A. E. Pillay, Metals, Metalloids and Toxicity in Date Palms: Potential Environmental Impact. J. Environ. Prot., 2 (2011) 592-600.
  • Mrabet, H. Hammadi, G. Rodríguez-Gutiérrez, A. Jiménez-Araujo and M. Sindic, Date Palm Fruits as a Potential Source of Functional Dietary Fiber: A Review. Food Sci. Technol. Res., 25 (2019) 1–10.
  • A. AlFaris, J. Z. AlTamimi, F. A. AlGhamdi, N. A. Albaridi, R. A. Alzaheb, D. H. Aljabryn, A. H. Aljahani and L. A. AlMousa, Total phenolic content in ripe date fruits (Phoenix dactylifera L.): A systematic review and meta-analysis. Saudi J. Biol. Sci., 28 (2021) 3566–3577.
  • A. Vinson, X. Su, L. Zubik, and P. Bose, Phenol antioxidant quantity and quality in foods: Fruits. J. Agric. Food Chem., 49 (2001) 5315–5321.
  • Ghahremannejad, M. Alizadeh, S. Pirsa, Partial Substitute of Sugar with Date Concentrate in the Peach/Apple Juice and Study Physicochemical/Color Properties of Blend Fruit Juice. Adv. J. Food Sci. Technol., 13 (2017) 236-252
  • M. Aldjain, M. H. Al-Whaibi, S. S. Al-Showiman and M. H. Siddiqui, Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh. Saudi J. Biol. Sci., 18 (2011) 175–180.
  • Shahdadi, H. O. Mirzaei and A. D. Garmakhany, Study of phenolic compound and antioxidant activity of date fruit as a function of ripening stages and drying process. J. Food. Sci. Technol., 52 (2015) 1814–1819.
  • Mansouri, G. Embarek, E. Kokkalou and P. Kefalas, Phenolic Profile and Antioxidant Activity of the Alge-rian Ripe Date Palm Fruit (Phoenix dactylifera). Food Chem., 89 (2005) 411-420.
  • Al-Farsi, C. Alasalvar, A. Morris, M. Baron and F. Shahidi, Comparison of Antioxidant Activity, Antho-cyanins, Carotenoids, and Phenolics of Three Native Fresh and Sun-Dried Date (Phoenix dactylifera L.) Varie-ties Grown in Oman. J. Agric. Food Chem., 53 (2005) 7592-7599.
  • K. Vayalil, Antioxidant and Antimutagenic Properties of Aqueous Extract of Date Fruit (Phoenix dactylifera L. Arecaceae). J. Agric. Food Chem., 50 (2002) 610-617.
  • A. Vinson, L. Zubic, P. Bose, N. Samman and J. Proch, Dried Fruits: Excellent in Vitro and in Vivo Antioxi-dants. J. Am. Coll. Nutr., 24 (2005) 44-50.
  • B-N. Al-Rudaiman, Secrets of breakfast on wet and dates in Ramadan. Assiut J. Environ. Stud., 32 (2007) 47-52 (in Arabic).
  • Echegaray, M. Pateiro, B. Gullón, R. Amarowicz, J. M. Misihairabgwi and J. M. Lorenzo, Phoenix dactylifera products in human health–A review. Trends Food Sci. Technol., 105 (2020) 238–250.
  • A. Al-Alawi, J. H. Al-Mashiqri, J. S. Al-Nadabi, B. I. Al-Shihi, Y. Baqi,, Date palm tree (Phoenix dactylifera L.): natural products and therapeutic options. Front. Plant Sci., 8 (2017) 845.
  • Al-Shahib and R. J. Marshall, The fruit of the date palm: its possible use as the best food for the future. Int. J. Food Sci. Nutr., 54 (2003) 247–259.
  • F. Salama, M. A. Randhawa, A. A. Al Mulla and O. A. Labib, Heavy metals in some date palm fruit cultivars in Saudi Arabia and their health risk assessment, Int. J. Food Prop., 22 (2019) 1684–1692.
  • B. Saafi, A. El Arem, M. Issaoui, M. Hammami and L. Achour, Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia, Int. J. Food Sci. Technol., 44 (2009) 2314–2319.
  • Biglari and A. F. M. AlKarkhi, A. M. Easa, Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran, Food Chem., 107 (2008) 1636–1641.
  • L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic., 16 (1965) 144–158.
  • , G. Singleton, L. P. Leong, Residue from star fruit as valuable source for functional food ingredients and antioxidant nutraceuticals. Food Chem., 97 (2006) 277–284.
  • 24) M. S. Blois, Antioxidant determinations by the use of a stable free radical. Nature, 26 (1958) 1199–1200
  • Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith., Colorimetric method for determination of sugars and related substances. Anal. Chem., 28 (1956) 350–356.
  • AOAC, Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA (2000).
  • B. Harborne, A guide to modern techniques of plant analysis. Phytochemical methods. 3rd ed. Chapman and Hall, London, New York (1998).
  • Gul, S. U. Jan, S. Faridullah, S. Sherani and N. Jahan, Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra Intermedia Indigenous to Balochistan. Sci. World J., 2017 (2017) 1-7.
  • O. Debiyi and F. A. Sofowora, Pytochemical screening of medical plants. Iloyidia, 3 (1978) 234–246.
  • Najah, K. M. Elsherif, E. Kawan and N. Farah, Phytochemical Screening and Heavy Metals Contents of Nicotiana Glauca Plant, Int. J. Pharm. Pharm. Res., 4 (2015) 82-91.
  • Najah, K. M. Elsherif, M. Alshtewi and H. Attorshi, Phytochemical Profile and Heavy Metals Contents of Codium Tomentosum and Sargassum Hornschuchi, J. Appl. Chem. (Lumami, India), 4 (2015) 1821-1827.
  • Najah, K. M. Elsherif, Analytical and Phytochemical Studies On Zizyphus Lotus, Eur. J. Biomed. Pharm. Sci., 3 (2016) 574-577.
  • M Mandal, D. Chakraborty and S. Dey, Phenolic acids act as signaling molecules in plant-microbe symbioses, Plant Signal Behav., 5 (2010) 359–368.
  • N. Panche, A. D. Diwan and S. R. Chandra, Flavonoids: an overview, J. Nutr. Sci., 5 (2016) 1-15.
  • Kytidou, M. Artola, H. S. Overkleeft and J. M. F. G. Aerts Plant Glycosides and Glycosidases: A Treasure-Trove for Therapeutics. Front. Plant Sci., 11 (2020) 1-21.
  • M. Kondi and A. J. Shana, Detection of some antioxidants in some types of local phoenix dactylifera. Special Issue for The 3rd Annual Conference on Theories and Applications of Basic and Biosciences, Misurata University, (2019) 204–213.
  • , A. Oribi, A study on some chemical characteristics of hyphaene thebaica palm fruits, and pectin chemical and physical features. Basrah J. Date Palm Res., 17 (2018). 51–63.
  • Maqsood, O. Adiamo, M. Ahmad, P. Mudgil, Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem., 308 (2020) 125522
  • A. Al-Dashti 1, R. R. Holt, C. L. Keen and R. M. Hackman, Date Palm Fruit (Phoenix dactylifera): Effects on Vascular Health and Future Research Directions. Int. J. Mol. Sci., 22 (2021) 1-16.
  • R. P. Periyasamy and S. Padmanayaki, Nutritional Composition of the Wild Date Palm. Int. J. Adv. Res. Comput. Sci. Software Eng., 7 (2017) 461.
  • Ashraf and Z. Hamidi-Esfahani, Date and Date Processing: A Review, Food Rev. Int., 27 (2011) 101–133.
  • Parvin, Nutritional Analysis of Date Fruits (Phoenix dactylifera L.) in Perspective of Bangladesh. Am. J. Life Sci., 3 (2015) 274-278.
  • H. Hui, Fruit and Fruit Processing, 1st, Blackwell Publishing: Iowa, USA (2006).
  • Hasanaoui, M. A. Elhoumaizi, A. Hakkou, B. Wathelet, and M. Sindic, Physico-chemical Characterization, Classification and Quality Evaluation of Date Palm Fruits of some Moroccan Cultivars. J. Sci. Res., 3 (2010) 139-149.
  • Biglari, Assessment of Antioxidant Potential of Date (Phoenix dactylifera L.) Fruits from Iran, Effect of Cold Storage and Addition to Minced Chicken Meat, MSc thesis of science. School of Industrial Technology. University Sains Malaysia. Penang, Malaysia, (2009).
  • A. Assirey, Nutritional composition of fruit of 10 date palm (Phoenix dactylifera L.) cultivars grown in Saudi Arabia. J. Taibah Univ. Sci., 9 (2015) 75-79
  • B. ALAswad, The Amino Acids Content of some Iraqid dates. J. Food Sci., 36 (1971) 1019–1020.
  • Eid, H. Osmanova, C. Natchez, G. Walton, A. Costabile, G. Gibson, I. Rowland and J. P. Spencer, Impact of palm date consumption on microbiota growth and large intestinal health: A randomised, controlled, cross-over, human intervention study. Br. J. Nutr., 114 (2015) 1226–1236.
  • M. Eid, B. Al-Awadi, D. Vauzour, M. J. Oruna-Concha andJ. P. Spencer, Effect of cultivar type and ripening on the polyphenol content of date palm fruit. J. Agric. Food Chem., 61 (2013) 2453–2460.
  • El Hadrami and J. M. Al-Khayri, Socioeconomic and traditional importance of date palm. Emir J Food Agric., 24 (2012) 371-385.
  • Ezari; Kh (2013). Study of pesticides and phenols in some types of local dates, Kasdi Rabah University - Ouargla, Algeria. p. 20-24 (in Arabic)
  • H. Matloob and A. A. A. Balakit, Phenolic Content of Various Date Palms Fruits And Vinegars From Iraq. Int. J. Chem. Sci., 14 (2016) 1893-1906.
  • T. Idowu, Q. Q. Igiehon, A. E. Adekoya and S. Idowu, Dates palm fruits: A review of their nutritional components, bioactivities and functional food applications, AIMS Agric. Food, 5 (2020) 734-755.
  • Al-Farsi, A. Morris and M. Baron, Functional properties of Omani dates (Phoenix dactylifera L.). Acta Hortic., 736 (2007) 479–488.
  • I. Al-Humaid, H. M. Mousa, R. A. El-Mergawi, A. M. Abdel-Salam, Chemical composition and antioxidant activity of dates and dates-camel-milk mixtures as a protective meal against lipid peroxidation in rats. Am. J. Food Technol., 5 (2010) 22–30.
  • R. S. Ardekani, M. Khanavi, M. Hajimahmoodi, M. Jahangiri, and A. Hadjiakhoondi, Comparison of Antioxidant Activity and Total 10 Phenol Contents of some Date Seed Varieties from Iran. Iran. J. Pharm. Res., 9 (2010) 146–149.