Computational techniques in designing a series of 1,3,4-trisubstituted pyrazoles as unique hepatitis C virus entry inhibitors

Document Type : Research Article


1 52 Abba Zuru closed Area F ABU Zaria.

2 Department of Chemistry, Faculty of Physical Science, Ahmadu Bello University, Zaria-Nigeria


In this study, we developed a QSAR model for studying the antiviral activity of 1,3,4-trisubstituted pyrazoles derivatives on hepatitis C virus infected in human HuH-7 cell lines. We employed random analysis to split the data sets. Statistically robust model was generated with R2, Q2 and R2pred values of 0.777, 0.731 and 0.774 respectively. The reliability of this model was confirmed by acceptable validation parameters, and this model also fulfilled the Golbraikh and Tropsha standard model conditions. Through the evaluation of selected molecular descriptors we observed that, topological charge index of order 4 (GGI4), mean topological charge index of order 1 (JGI1), octanol water partition coefficient (XlogP), 3D topological distance based autocorrelation lag5/weighted by polarizabilities (TDB5p) and total molecular surface area (FPSA-2) are the molecular properties determining biological activities of the study compounds, which shed light on the vital features that aid in the design of unique potent hepatitis C virus entry inhibitors using computer-aided drug design tools.


Main Subjects

[1] S. Jia, W. Zhou, J. Wu, X. Liu, S. Guo, J. Zhang, and X. Zhang, A biomolecular network-based strategy deciphers the underlying molecular mechanisms of Bupleuri Radix/Curcumae Radix medicine pair in the treatment of hepatitis C. European Journal of Integrative Medicine, 33 (2020) 101043.
[2] L. A. El-Kassem, U. W. Hawas, S. El-Souda, E. F. Ahmed, W. El-Khateeb, and W. Fayad, Anti-HCV protease potential of endophytic fungi and cytotoxic activity. Biocatalysis and Agricultural Biotechnology, 19 (2019) 101170.
[3]  R. González-Grande, M. Jiménez-Pérez, C. G. Arjona, and J. M. Torres, New approaches in the treatment of hepatitis C. World journal of gastroenterology, 22(4) (2016) 1421.
[4]  A. Kucherenko, V. Pampukha, K. Y. Romanchuk, S. Y. Chernushyn, I. Bobrova, L. Moroz, and L. Livshits, IFNL4 polymorphism as a predictor of chronic hepatitis C treatment efficiency in Ukrainian patients. Cytology and Genetics, 50(5) (2016), 330-333
[5]  World Health Organization; Guidelines for the care and treatment of persons diagnosed with chronic hepatitis C virus infection. Geneva. Licence: CC BY-NC-SA 3.0 IGO (2018)
[6]  M. Liu, Q. Xu, S. Guo, R. Zuo, Y. Hong, Y. Luo, and Y. Liu, Design, synthesis, and structure-activity relationships of novel imidazo [4, 5-c] pyridine derivatives as potent non-nucleoside inhibitors of hepatitis C virus NS5B. Bioorganic & medicinal chemistry, 26(9) (2018) 2621-2631.
[7]  F. Poordad, Jr. J. McCone, B. R. Bacon, S. Bruno, M. P. Manns, M. S. Sulkowski, and N. Boparai, Boceprevir for untreated chronic HCV genotype 1 infection. New England Journal of Medicine, 364(13) (2011) 1195-1206.
[8]  M. R. Bidell, M. McLaughlin, J. Faragon, C. Morse, and N. Patel, Desirable characteristics of hepatitis C treatment regimens: a review of what we have and what we need. Infectious diseases and therapy, 5(3) (2016) 299-312.
[9]  D. E. Arthur, S. Ejeh, and A. Uzairu, Quantitative structure-activity relationship (QSAR) and design of novel ligands that demonstrate high potency and target selectivity as protein tyrosine phosphatase 1B (PTP 1B) inhibitors as an effective strategy used to model anti-diabetic agents. Journal of Receptors and Signal Transduction, (2020) 1-20.
[10]  K. S. Bhadoriya, M. C. Sharma, and S. V. Jain, 2, 4-Dihydropyrano [2, 3-c] pyrazole: Discovery of new lead as through pharmacophore modelling, atom-based 3D-QSAR, virtual screening and docking strategies for improved anti-HIV-1 chemotherapy. Journal of Taibah University for Science, 9(4) (2015) 521-530.
[11]  R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C. P. Varghese, and R. K. Agrawal, Validation of QSAR models-strategies and importance. International Journal of Drug Design & Discovery, 3, (2011) 511-519.
[12]  B. J. Neves, R. C. Braga, C. C. Melo-Filho, J. T. Moreira Filho, E. N. Muratov, and C. H. Andrade, QSAR-based virtual screening: advances and applications in drug discovery. Frontiers in pharmacology, 9, (2018) 1275.
[13]  V. Vyas, A. Jain, and A. Gupta, Virtual screening: a fast tool for drug design. Scientia Pharmaceutica, 76(3), (2008) 333-360.
[14]  D. E. Arthur, A. Uzairu, P. Mamza, and S. Abechi, Quantitative structure–activity relationship study on potent anticancer compounds against MOLT-4 and P388 leukemia cell lines. Journal of Advanced Research, 7(5), (2016) 823-837.
[15]  K. Roy, I. Mitra, S. Kar, P. K. Ojha, R. N. Das, and H. Kabir, Comparative studies on some metrics for external validation of QSPR models. Journal of chemical information and modeling, 52(2), (2012) 396-408.
[16]        P. J.Therese, D. Manvar, S. Kondepudi, M. B. Battu, D. Sriram, A. Basu, and N. Kaushik-Basu, Multiple e-pharmacophore modeling, 3D-QSAR, and high-throughput virtual screening of hepatitis C virus NS5B polymerase inhibitors. Journal of chemical information and modeling, 54(2) (2014) 539-552.
[17]  A. Tropsha, Best practices for QSAR model development, validation, and exploitation. Molecular informatics, 29(6‐7), (2010) 476-488.
[18]  Y. Shao, L. F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S. T. Brown, and D. P. O’Neill, Advances in methods and algorithms in a modern quantum chemistry program package. Physical Chemistry Chemical Physics, 8(27) (2006) 3172-3191.
[19]  C. W. Yap, PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of computational chemistry, 32(7) (2011) 1466-1474.
[20]  D. Rogers, Evolutionary Statistics: Using a Genetic Algorithm and Model Reduction to Isolate Alternate Statistical Hypotheses of Experimental Data. Paper presented at the ICGA (1997).
[21]  A. Beheshti, E. Pourbasheer, M. Nekoei, and S. Vahdani, QSAR modeling of antimalarial activity of urea derivatives using genetic algorithm–multiple linear regressions. Journal of Saudi Chemical Society, 20(3) (2016) 282-290.
[22]  L. Eriksson, J. Jaworska, A. P. Worth, M. T. Cronin, R. M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification-and regression-based QSARs. Environmental health perspectives, 111(10) (2003) 1361-1375.
[23]  F. Li, X. Li, X. Liu, L. Zhang, L. You, J. Zhao, and H. Wu, Docking and 3D-QSAR studies on the Ah receptor binding affinities of polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs). environmental toxicology and pharmacology, 32(3) (2011) 478-485.
[24]  D. A. Evans, History of the Harvard ChemDraw project. Angewandte Chemie International Edition, 53(42) (2014) 11140-11145.
[25]  Z. Li, H. Wan, Y. Shi, and P. Ouyang, Personal experience with four kinds of chemical structure drawing software: review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. Journal of Chemical Information and Computer Sciences, 44(5) (2004) 1886-1890.
[26]  R. Huey, G. M. Morris, and S. Forli, Using AutoDock 4 and AutoDock Vina with AutoDockTools: A Tutorial. The Scripps Research Institute Molecular Graphics Laboratory, (2012)
[27]  M. Danishuddin, S. N. Khan, and A. U. Khan, Molecular interactions between mitochondrial membrane proteins and the C-terminal domain of PB1-F2: an in silico approach. Journal of molecular modeling, 16(3) (2010) 535-541.
[28]  O. Trott, and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2) (2010) 455-461.
[29]  A. Golbraikh,  and A. Tropsha, Beware of q2! Journal of molecular graphics and modelling, 20(4) (2002) 269-276.
[30]  Z. Qin, M. Wang, and A. Yan, QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM). Bioorganic & Medicinal Chemistry Letters, 27(13) (2017) 2931-2938.
[31] S. N. Adawara, G. A. Shallangwa, P. A. Mamza, A. Ibrahim, QSAR Model for Prediction of some Non-Nucleoside inhibitors of Dengue virus serotype 4 NS5 Using GFA-MLR Approach. J. Chem. Lett. 1 (2020) 69-76
[32]  R. Todeschini, and V. Consonni, Handbook of molecular descriptors (Vol. 11): John Wiley & Sons (2008).
[33]  R. Wang, Y. Gao, and L. Lai, Calculating partition coefficient by atom­ additive method, Perspectives in Drug Discovery and Design, 19 (2000) 47–66.
[34]  P. Stenberg, K. Luthman, H. Ellens, C. P. Lee, P. L. Smith, A. Lago, J. D. Elliot, and P. Artursson, Prediction of the intestinal absorption of endothelin receptor antagonists using three theoretical methods of increasing complexity. Pharm. Res, 16 (1999) 1520–1526. doi:10.1023/A:1015092201811
[35]  D. E. Clark, Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J. Pharm. Sci, 88 (1999) 807–816.
[36]         M. R. J. Sarvestani, S. Majedi, A DFT study on the interaction of alprazolam with fullerene (C20).  J. Chem. Lett. 1 (2020) 32-38
Volume 4, Issue 2 - Serial Number 2
April 2021
Pages 108-119
  • Receive Date: 17 September 2020
  • Revise Date: 23 December 2020
  • Accept Date: 31 January 2021
  • First Publish Date: 31 January 2021