


## Research Article

#### Chemical Review and Letters

journal homepage: www.chemrevlett.com ISSN (online): 2645-4947 (print) 2676-7279



# Synthesis of 2, 4 disubstituted 1, 5 benzodiazepines promoted by efficient Silica-**Alumina Catalyst**

Deepak Tayde<sup>a</sup>, Machhindra Lande<sup>b</sup>\*

<sup>a</sup>Mahant Jamnadas Maharaj Arts, Commerce and Science college, Karanjali, Nashik, India <sup>b</sup>Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, India \*Corresponding author- Tel: +91 0240 2403311; Fax: +91 0240 2403335; E-mail address: mkl chem@yahoo.com

#### ARTICLE INFO

#### ABSTRACT

Article history: Received 1 October 2020 Received in revised form 1 December 2020 Accepted 20 December 2020 Available online 1 January 2021

Keywords:

synthesis. Condensation.

An efficient and environment friendly valuable synthon of 1, 5 benzodiazepine derivatives were synthesized having unique physical and medicinal properties. This reaction is performed by mesoporous binary mixed metal oxide SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> which is synthesized by hydrothermal method at high temperature. This mesoporous material is investigated by XRD, SEM, EDS, TEM, TPD and BET surface area. Present method offers several remarkable advantages such as non-toxic, noncorrosive and easy work-up procedure for the purification of product with non-chromatographic Benzodiazepine, Hydrothermal method, Green method, ecofriendly reaction condition.

#### 1. Introduction

Heterocyclic compounds occur widely in nature and a many of the compounds are essential to life processes. The literature on heterocyclic compounds are repleted with examples of a large number of synthetic methods of naturally occurring systems which are pharmacologically active [1-11].

of the heterocyclic compounds benzodiazepine sometimes colloquially "benzo"; often abbreviated as "BZD" is a mind-altering drug whose core chemical structure consist of the fusion of a benzene and a diazepine rings. Accidentally the first benzodiazepine was discovered by Leo Sternbach in 1955 [12-13].

The only 1,4- and 1,5-benzodiazepines found wide applications in medicines among all sorts of benzodiazepines (1,2-,1,3-, 1,4-, 1,5-, 2,3-, & 2,4-) among these 1,5-benzodiazepines are the core structure of these derivatives those are having widespread biological activities. Due to this young researchers are having very much attracted towards the synthesis of this molecule [14-16]. The adequate quantity of the benzodiazepine is beneficial to the human body.

Derivatives of benzodiazepines are widely used as anticonvulsant, antianxiety, analgesic, sedative, antidepressive, hypnotic agents [20-27] and antiinflammatory agents [28]. 1, 5 benzodiazepines

framework has emerged as an important pharmacophore since its derivatives exhibit a wide range of medicinal applications such as anti-HIV, anticancer, angiotensin, converting enzyme inhibitor, antimicrobial compounds etc [29-31]. In the last decade, the area of biological interest of 1, 5benzodiazepines have been extended to several diseases like cancer, viral infection and cardiovascular disorders [32-33]. In addition, to 1, 5-benzodiazepines are key intermediates for the synthesis of various fused ring systems such as triazolo-, oxadiazolo-, oxazino- or furanobenzodiazepines [34-35]. Besides, benzodiazepine derivatives are useful for commercial importance in dyes for acrylic fibers in photography [36-39].

Owing to their versatile application various methods have been developed for the synthesis benzodiazepines has been reported in the literature [40][41]. The different type of catalyst has been utilized for the synthesis of benzodiazepine such as montmorillonite [42] and Heteropolyacid [43] magnetically retrievable Fe<sub>3</sub>O<sub>4</sub> nanocatalyst [44]. CeO<sub>2</sub>/CuO@Nitrogen Graphene Quantum Dots@NH<sub>2</sub> Nanocomposite [45], Volcanic ash [46]

Moreover 1, 5-benzodiazepines derivatives are valuable synthons used in preparation of other fused ring compounds such as triazolo-, oxadiazolo-, oxazino-,or furanobenzodiazepines [47-52].

<sup>\*</sup>Corresponding author-Tel: +91 9421061069; E-mail address: mkl\_chem@yahoo.com.

#### 2. Results and Discussion

To determine the role of solvent and catalyst, we have chosen chalcone (1) and o-phenylene diamine (2) as the model reaction. In this our study, the effect of different solvent was investigated and given in Table 1 the choice of solvent proved critical. It was observed that the ethanol has proven a much better solvent in terms of yield than all other tested solvents such as dichloromethane, acetonitrile and methanol.

**Table 1** Optimization of model reaction using several solvent.

| Entry | Solvent            | Time (min) | Yield (%) <sup>b</sup> |
|-------|--------------------|------------|------------------------|
| 1     | Solvent Free       | 120        | 78                     |
| 2     | $CH_2Cl_2$         | 160        | 73                     |
| 3     | MeCN               | 160        | 69                     |
| 4     | CH <sub>3</sub> OH | 120        | 76                     |
| 5     | 1,4 dioxane        | 130        | traces                 |
| 6     | <b>EtOH</b>        | 60         | 93                     |

Reaction Condition: Chalcone (1mmol), o-phenylenediamine (1mmol), catalyst 0.1g. <sup>b</sup>Isolated yield.

When same reaction was carried out in the absence of catalyst very less amount of product (20%) was obtained which indicate that a catalyst is necessary for the reaction. In this connection, we carried out the reaction using different amount of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> and the results obtained are summarized in (Table 2). With an increase in the quantity of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> from 0.05 to 0.2g. To obtained good yield of product for 0.1g of amount of catalyst.

**Table 2** Optimization of model reaction using different amount of catalyst on the reaction condition.

| Entry | Catalyst    | Time(min) | Yield (%)a |
|-------|-------------|-----------|------------|
|       | amount (g)  |           |            |
| 1     | No Catalyst | 160       | 20         |
| 2     | 0.05        | 130       | 85         |
| 3     | 0.1         | 60        | 93         |
| 4     | 0.15        | 90        | 92         |
| 5     | 0.2         | 120       | 90         |
|       |             |           |            |

Reaction Condition: chalcone (1mmol), o-phenylenediamine (1mmol), catalyst. <sup>b</sup>Isolated yield.

To compare the  $SiO_2$ - $Al_2O_3$  catalyst activity with the another reported catalyst in the literature shown in (Table 3), to oberserved that  $SiO_2$ - $Al_2O_3$  syntheised material shown a good yield in reported time.

**Table 3** Synthesis of 2, 4 disubstituted 1, 5, benzodiazepine derivatives catalyzed by SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.

| Entry | Catalyst                                          | Time(h) | Yield (%)a |
|-------|---------------------------------------------------|---------|------------|
| 1     | SbCl <sub>3</sub> -Al <sub>2</sub> O <sub>3</sub> | 3-4     | 83[53]     |
| 2     | MCM-41                                            | 8       | 90[54]     |
| 3     | $HPW/SiO_2$                                       | 2       | 92[55]     |
| 4     | $SiO_2/H_2SO_4$                                   | 1-2     | 90[56]     |
| 5     | SiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub>  | 1       | 93         |

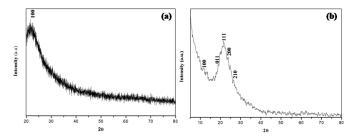
It was interesting noticed that the nature of substituent on the aromatic ring does not affect the yield of product. From (Table 4) it was clear that the reaction of aromatic aldehyde carrying electron-donating or electron-withdrawing groups were also successfully carried out by this method.

**Table 4** Synthesis of 2, 4 disubstituted 1, 5, benzodiazepine derivatives catalyzed by SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.

| _ ( | Produ<br>ct | R                               | R'                                | Time<br>(min | Yiel<br>d | M.P.(°C) |                |
|-----|-------------|---------------------------------|-----------------------------------|--------------|-----------|----------|----------------|
|     |             |                                 |                                   | )            | (%)<br>a  | Found    | Literatur<br>e |
|     | 3a          | C <sub>6</sub> H <sub>5</sub>   | C <sub>6</sub> H <sub>5</sub>     | 120          | 90        | 76-78    | 77[57]         |
|     | 26          | C <sub>6</sub> H <sub>4</sub>   | 4-                                | 145          | 81        | 160-     |                |
|     | 3b          | C6H4                            | OMeC <sub>6</sub> H <sub>4</sub>  | 143          | 81        | 162      | 160[57]        |
|     | 2           | C II                            | 4 CIC II                          | 105          | 00        | 116-     |                |
|     | 3c          | C <sub>6</sub> H <sub>4</sub>   | 4-ClC <sub>6</sub> H <sub>4</sub> | 125          | 80        | 118      | 117[58]        |
|     | 2.1         | G II                            | 4 0110 11                         | 100          | 00        | 117-     |                |
|     | 3d          | C <sub>6</sub> H <sub>4</sub>   | 4-OHC <sub>6</sub> H <sub>4</sub> | 130          | 80        | 119      | 120[57]        |
|     | 3e          | C <sub>6</sub> H <sub>4</sub>   | 4-FC <sub>6</sub> H <sub>4</sub>  | 128          | 97        | 80-81    | 79[58]         |
|     | 2.5         | 4-                              | C II                              | 120          | 07        | 129-     |                |
| _   | 3f          | ClC <sub>6</sub> H <sub>4</sub> | $C_6H_5$                          | 120          | 87        | 131      | 130[59]        |
|     |             | 2-                              | G ***                             | 400          | 0.0       | 132-     |                |
| _   | 3g          | ClC <sub>6</sub> H <sub>4</sub> | $C_6H_5$                          | 132          | 89        | 134      | 132[60]        |
|     |             |                                 |                                   |              |           |          |                |

Reaction Condition: chalcone (1mmol), o-phenylenediamine (1mmol), catalyst 0.1g. <sup>a</sup>Isolated yield.

In this study, the catalyst was recovered and reused in another run. The catalyst was recovered by simple filtration, washed with ethanol and reused for three successive reaction giving 89, 87, 83% yield of product (Table 5).


**Table 5** Studies on reusability of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> metal oxide in the preparation of 3a.

|       | · r · r · · · · · · · · · · · · · · · · |            |
|-------|-----------------------------------------|------------|
| Entry | Number of recycling                     | Yield (%)a |
| 1     | Fresh                                   | 93         |
| 2     | 1                                       | 89         |
| 3     | 2                                       | 87         |
| 4     | 3                                       | 83         |

Reaction Condition: Chalcone (1mmol), o-phenylenediamine (1mmol), catalyst 0.1g. <sup>b</sup>Isolated yield.

# 2.1 XRD Analysis

The XRD pattern is useful to investigate the geometry and crystallanity of synthesized material. The powder X-ray diffraction pattern of SiO<sub>2</sub> shows the broad peak at 21.74° with a 100 plane indicating the amorphous nature of silicon dioxide (JCPDS card no 01-086-1561) as shown in Fig.1(a). The XRD pattern of synthesized SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> is shown in Fig.1(b) the XRD pattern shows the orthorhombic crystal structure which is matched with JCPDS card no 84-1566 having lattice parameters a=7.503, b=7.738, c=5.804. Here broad peak at 21.74° indicates 111 plane with sharp point that signifies enhancement in the crystalline nature of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> enhanced.



**Figure 1**: XRD pattern of a) SiO<sub>2</sub>, b) SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> mixed metal oxides.

#### 2.2 TPD Analysis

NH<sub>3</sub>-TPD provides information about the total concentration and strength of Bronsted and Lewis acidic sites [61]. From NH<sub>3</sub>-TPD analysis, it was found that the ammonia desorbed in three different regions. In first region 0.00155 mmol/gm of NH<sub>3</sub> desorbed at 185.3°C to presence of Lewis acidic sites, while in the second and third region 0.00394 mmol/gm, 0.00552 mmol/gm of NH<sub>3</sub> desorbed at 428.1°C and 691.0°C Bronsted acidic sites respectively. Hence the total strength of acidic sites present in SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> was found to be 0.01101 mmol/gm (Fig. 2). The presence of both weak Lewis and strong Bronsted acidic sites in SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> can be attributed to the Ammonia-TPD. Increased numbers of Bronsted acidic sites play a significant role in the synthesis of pyrazole derivatives.

Schematic representation of plausible mechanism of 2, 4 disubstituted 1, 5, benzodiazepine.

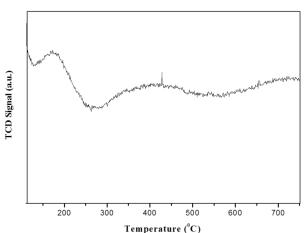
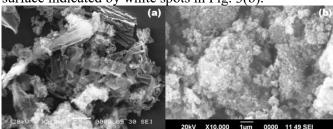
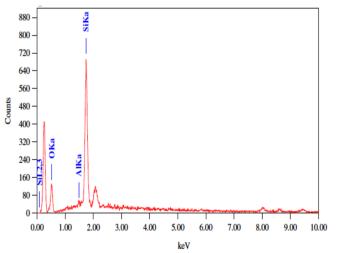



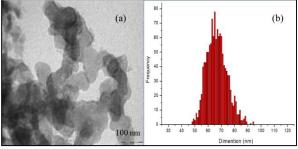

Figure 2: NH<sub>3</sub>-TPD profile of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> mixed metal oxide.


### 2.3 SEM-EDS Analysis

Surface morphology of the synthesized  $SiO_2$ - $Al_2O_3$  catalyst was studied by SEM image. In the Fig.3(a) shows the flakes like structure of  $SiO_2$  oxide. When  $Al_2O_3$  doped on the surface of  $SiO_2$  which is seen on the surface indicated by white spots in Fig. 3(b).



**Figure 3**: SEM image of a) SiO<sub>2</sub> b) SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> of mixed metal oxide.


Elemental composition of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> catalysts is represented in Fig.4 intense peaks in the figure show the presence of Si, Al and O with 44.41, 1.55 and 54.05 atom% respectively. The minimum expected stoichiometric ratio was maintained.



**Figure 4:** EDS spectrum of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> mixed metal oxide.

## 2.4 TEM Analysis

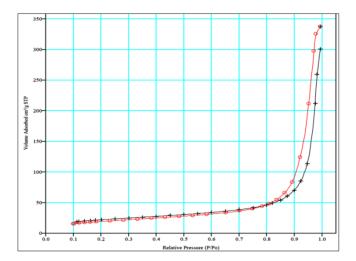
In Fig.5(a) shows TEM image of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>, which were used to calculate size distributions and average particle size of catalyst. The maximum and minimum size of particles was found 127 nm and 9.51 nm respectively. Size distribution was shown in Fig.5 (b). Asymmetric histograms of these images due to the lack of detection of particles are less than 1nm. The powder XRD patterns also confirm the presence of a crystalline phase.



**Figure 5**: TEM image of a) calcined SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> b) Associate particle histogram of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.

#### 2.5 BET Surface Area And Porosity Analysis

The surface area and pore size of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> nanocomposite material was characterized by the N<sub>2</sub>-BET method. The N2 adsorption-desorption isotherms provide information on the textural properties of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> and the specific surface area shown in Fig 6. The BET Surface area, average pore diameter and pore volume of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> depicted in Table 5.


The amount of  $N_2$  gas adsorbed-desorbed at a given pressure allows determining the surface area of material. The isotherm curve indicates large volume was adsorbed on the surface of the material. Single point BET surface area at P/Po is  $80.3224 \text{ m}^2/\text{g}$ , it signifies that the

synthesized material has a higher surface area. Due to this, the material gives higher catalytic activity.

Similarly, the adsorption average pore diameter for the same material is 27.39 nm, and BJH pore volume is 0.32 cm2/gm. Smaller the pore volume of material, the greater the catalytic activity.

**Table 5.** BET surface area, average pore diameter and microspore volume of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.

| Sample                                           | Surface<br>Area<br>(m²/g) | Average pore diameter (nm) | Micro<br>pore<br>volume<br>(cm²/g) |
|--------------------------------------------------|---------------------------|----------------------------|------------------------------------|
| SiO <sub>2</sub> -Al <sub>2</sub> O <sub>3</sub> | 80.3224                   | 27.39                      | 0.32                               |



**Figure 6**: N<sub>2</sub> adsorption/ desorption isotherm of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub>.

#### 3. Experimental

#### 3.1. General

All chemicals were purchased from Sigma Aldrich chemical and Molychem suppliers and used as received. Reaction monitoring was accompanied by thin layer chromatography (TLC) and visualized under ultraviolet (UV) light.

#### 3.2 Preparation Of Catalyst

The Mesoporous SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> mixed metal oxide prepared by hydrothermal method. In a typical procedure 1gm cetyl trimethyl ammonium bromide (CTAB) was added in mixture of 8.33mL of tetraethyl ortho silicate (TEOS), aqueous solution of 0.25 gm of aluminum nitrate (Al(NO<sub>3</sub>)<sub>3</sub>). Add 5 mL 1:1 aqueous sodium hydroxide (aq. NaOH) to maintain PH up to 9-10 and stirred this mixture at room temperature for 24 h to obtain precipitate. Then this mixture of precipitate hydrothermally treated at 150°C for 5 h in high pressure autoclave at 400 rpm having autogeneous pressure 54 psi at the volume 250 mL of mixture. After this the mixture was cooled at room temperature solid material obtained was filtered and washed with deionised water, dried at 80°C for 6 h and calcined at 500°C for 3 h.

#### 3.3 Catalyst Characterization

prepared  $SiO_2$ - $Al_2O_3$ mixed metal oxide characterized by analytical instrumental techniques such as XRD, SEM, EDS, TEM, FTIR, TPD and BET surface area. These techniques were used to get the morphology, size, porosity and composition of synthetic material [62]. X-ray diffraction (XRD) analysis of the calcined SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> was carried out with a Phillips X-ray diffraction eter in a diffraction angle range  $2\theta(^{\circ})=20$  to 80 using Cu-Kα radiation with a wavelength of 1.540598 Å. Surface morphology and elemental analysis of the SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> were carried out using a JEOL-JEM 2300 (LA) scanning electron microscope with an electron dispersion spectroscope (SEM-EDS) attached. Fourier transform infrared (FT-IR) spectra were recorded on a FT-IR spectrometer (JASCO FTIR/4100, Japan) from 4000 to 400 cm-1.

# 3.4 General Procedure For The Synthesis Of Benzodizipine Derivatives.

A mixture of chalcone 1 (1 mmol), ophenylenediamine 2 (1mmol), in presence of SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> metal oxide (0.1g) was reflux at 80°C in ethanol as solvent with stirring for appropriate time. After completion of the reaction as indicated by TLC, filter the reaction mixture with filter paper and the catalyst was filtered off. The purity of the representative product was determined by comparison to the melting points, <sup>1</sup>H NMR, <sup>13</sup>C NMR, FTIR and Mass spectra in the literature.

#### 3.5 Spectral Data Of Representative Compound

(2Z, 5E)-1, 4-dihydro-2,5-diphenylbenzo[b][1,4]diazocine (3a); H NMR (CDCl<sub>3</sub>), 300MHz:  $\delta = 7.70$  (d, 2H), 7.66 (m, 10H), 6.55 (d, 2H), 5.40 (t, 1H), 4.32 (s, NH), 2.35 (d, CH<sub>2</sub> 2H); IR (KBr,  $v_{max}$ ): 2962 cm<sup>-1</sup>(NH), 1589 cm<sup>-1</sup> (C=C). <sup>13</sup>C NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm): 29.7, 77.9, 116.7, 120.7, 121.6, 122.4, 126.9, 127.4, 128.5, 129.9, 130.2, 133.4, 134.7, 136.4, 138, 139.4, 143.3,167.1. ES-MS: m/z 312.25 (M+3)

(2Z, 5E)-5-(4-chlorophenyl)-1, 4-dihydro-2-phenylbenzo[b][1,4]diazocine (3c);  ${}^{1}H$  NMR (CDCl<sub>3</sub>), 300MHz:  $\delta = 7.75$  (d, 2H), 7.55-7.69 (m, 9H), 6.60 (d, 2H), 5.50 (t, 1H), 4.25 (s, NH), 2.10 (d, CH<sub>2</sub> 2H); IR (KBr,  $v_{max}$ ): 3053 cm<sup>-1</sup>(NH), 1620 cm<sup>-1</sup> (C=C).  ${}^{13}C$  NMR (50 MHz, CDCl<sub>3</sub>)  $\delta$ (ppm): 30.6, 80.9, 118.5, 121.6,

121.6, 123.1, 127.4, 128.7, 129.9, 130.2, 133.4, 134.7, 136.6, 138, 141.6, 149.8,164.2.ES-MS: m/z 332.24 (M+2).

#### 4. Conclusion

In summery SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> binary mixed metal oxide catalyzed an efficient synthesis of 2, 4 disubstituted 1, 5, benzodiazepine derivatives using chalcone and ophenylenediamine in ethanol at 80°C temperature. Present method offers several remarkable advantages such as non-toxic, non corrosive and an inexpensive reaction condition. SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> remains unchanged in mass and chemical composition at the end of the reaction under environmentally benign conditions.

### 5. Acknowledgements

We are grateful to the Head, Department of Chemistry, Dr. B.A.M. University, Aurangabad, 431004 (MS), India, for providing the laboratory facility. The author DTT is thankful to UGC New Delhi for providing JRF for financial support. The authors are also thankful to STIC Cochin, CDRI Lucknow and IIT Madras for characterization facilities.

#### References

- [1] A. Pareek, N. Kumar, A. Agarwal, P. Sharma and D. Kishore, 1, 5 Benzodiazepines: Overview of Properties and Synthetic Aspects. Res. J. Chem. Sci., 3(7) (2013) 90-103.
- [2] M. S. Saini, A. Kumar, J. Dwivedi and R. Singh, A review: biological significances of heterocyclic compounds. *Int. J. Pharma. Sci. Res.*, 4(3) (2013) 66.
- [3] A. Thakkar, A Study on Biological Importance of Nitrogenous Based HeterocyclicCompounds. *Inter. J. Theor. Appl. Sci.*, 8(1) (2016) 53-54.
- [4] A. S. Suvarna, A Review on Synthetic Hetrocyclic Compounds in Agriculturaland other Applications. *Int. J. Pharm. Tech. Res.*, 8(8) (2015) 170-179.
- [5] A. Lauria, R. Delisi, F. Mingoia, A. Terenzi, A. Martorana, G. Barone, A. M. Almerico, 1,2,3-Triazole in Heterocyclic Compounds, Endowed with Biological Activity, through 1,3-Dipolar Cycloadditions. *Eur. J. Org. Chem.*, (2014) 3289-3306.
- [6] N. Adki, G. Ravi, Naseem, S. Sharath Kumar, G. R. Nageswara, Synthesis of new biologically active compounds containing linked thiazolyl-thiazolidinone heterocycles. *Org. Commun.*, 5(4) (2012) 160-170.
- [7] S. S. Kale, R. R. Pawar, A. S. Kale, Imidazole, Its Derivatives & Their Importance: A Review. *Int. J. Curr. Advanced Res.*, 5(5) (2016) 906-911.
- [8] M. Al-Ghorbani, B. Begum, A. Zabiulla, S. V. Mamatha, S. A. Khanum, Piperazine and morpholine: Synthetic preview and pharmaceutical applications. *J. Chem. Pharma. Res.*, 7(5) (2015) 281-301.
- [9] R. Mishra, K. K. Jha, S. Kumar, I. Tomer, Synthesis, properties and biological activity of thiophene: A review. *Der Pharm. Chemica.*, 3(4) (2011) 38-54.
- [10] J. Młochowski, K. Kloc, R. Lisiak, P. Potaczek, H. Wojtowicz, Developments in the chemistry of selenaheterocyclic compounds of practical importance in

- synthesis and medicinal biology. A.R.K.I.V.O.C., 6 (2007) 14-46.
- [11] M. Baumann, I. R. Baxendale, An overview of the synthetic routes to the bestselling drugs containing 6-membered heterocycles. Beilstein J. Org. Chem., 9, (2013) 2265-2319.
- [12] Michael J. Kukla, Henry J. Breslin, Rudi Pauwels, Cynthia L. Fedde, Milton Miranda, Malcolm K. Scott, Ronald G. Sherrill, Alfons Raeymaekers, Jozef Van Gelder, Koen Andries, Marsel A.C. Jannsen, Erik de Clerq and Paul A.J. Jannsen. Berslin, J. Med. Chem, 34 (1991) 746-751.
- [13] C. Page, C. Michael, M. Sutter, M. Walker, B. B. Hoffman, Integrated Pharma., (2ndEd.). C.V. Mosby(2002) ISBN 978-0-7234-3221-0.
- [14] A. R. Katrizky, R. Abonia, B. Yang, M. Qi, B, Insuasty, *Synthesis.*,(1998) 1487.
- [15] R. I. Shader, Benzodiazepines in clinical medicine: discussion. *Br. J. clin. Pharmac.*, 11 (1981) 55-59.
- [16] D. S. Baldwin, K. Aitchison, A. Bateson, H. V. Curran, S. Davies, B. Leonard, D. J. Nutt, D. N. Stephens, S. Wilson, Benzodiazepines: risks and benefits. A reconsideration . *J. Psychopharma.*, 27(11) (2013) 967-971.
- [17] D. P. Clifford, D. Jackson, R. V. Edwards, P. Jefferey. Herbicidal and pesticidal properties of some 1,5benzodiazepines, 1,3,5-benzotriazepines and 3,1,5benzothiadiazepines. *Pestic. Sci.*, 7 (1976) 453-458.
- [18] W. Werner, K. Wohlrabe, W. Gutsche, W. Jungstand, W. Roemer, Folida Haematol, 108 (1981) 637.
- [19] D. A. Goff, R. N. Zuckermann, Solid-phase synthesis of defined 1,4-benzodiazepine-2,5-dione mixtures. *J. Org. Chem.*, 60 (1995) 5744-5745.
- [20] H. Schutz, Benzodiazepines; Springer: Heidelberg, Germany, (1982).
- [21] L. O. Randall, B. Kamel, S. Garattini, E. Mussini, L. O. Randall, Eds.; Raven Press: New York, (1973) 27.
- [22] C. M. Sandra, C. C. Eduardo, H. O. Simon, R. A. Teresa, N. C. Antonio, I. V. Lijanova, M. G. Marcos, Anticancer activity and anti-inflammatory studies of 5-aryl-1,4-benzodiazepine derivatives. *Anti-Cancer Agents in Med. Chem.*, 12 (2012) 611-618.
- [23] V. Shahnavaz, K. B. Farahnaz, *Org. Chem. Ind. J.*, 12(4) (2016) 103.
- [24] C. W. Kuo, C. C. Wang, V. Kavala, C. F. Yao, Efficient TCT-catalyzed Synthesis of 1,5-Benzodiazepine Derivatives under Mild Conditions. *Molecules.*, 13 (2008) 2313-2325.
- [25] P. Aastha, K. Navneet, A. Anshu, S. Pratima, K. Dharma, 1, 5 Benzodiazepines: Overview of Properties and Synthetic Aspects. *Res. J. Chem. Sci.*, 3(7) (2013) 90-103.
- [26] R. A. Stein, T. L. Strickland, A Review of the Neuropsychological Effects of Commonly Used Prescription Medications. Archiv. Clinical Neuro., 13(3) (1998) 259-284.
- [27] J. S. Yadav, B. V. S. Reddy, G. Satheesh, G. Srinivasulu, A. C. Kunwar, InCl3-Catalyzed stereoselective synthesis of 1,5-benzodiazepines. *A.R.K.I.V.O.C.*, 3 (2005) 221-227.
- [28] J. R. D. Baun, F. M. Pallos, D. R. Baker, U. S. Patent., 3 978, (1976) 227.
- [29] S. S. Ilango, P. U. Ramya, S. Ponnuswamy, Synthesis and antimicrobial activity of novel 1,5-benzodiazepines. *Indian J. Chem.*, 52B (2013) 136-140.
- [30] M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. *Beilstein J. Org. Chem.*, 7 (2011) 442-495.

- [31] T. Clayton, M. M. Poe, S. Rallapalli, P. Biawat, M. M. Savit, J. K. Rowlett, G. Gallos, C. W. Emala, C. C. Kaczorowski, D. C. Stafford, L. A. Arnold, J. M. Cook, *Int. J. Medicinal Chem.*, (2015) 54.
- [32] V. Merluzzi, K. D. Hargrave, M. Labadia, K. Grozinger, M. Skoog, J. C. Wu, C. K. Shih, K. Eckner, S. Hattox, J. Adams, A. S. Rosenthal, R. Faanes, R. J. Eckner, R. A. Koup, J. L. Sullivan, Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor, *Sci.*,250 (1990) 1411-1413.
- [33] D. M. Braccio, G. Grossi, G. Romoa, L. Vargiu, M. Mura, M. E. Marongiu, 1,5-Benzodiazepines. Part XII. Synthesis and biological evaluation of tricyclic and tetracyclic 1,5benzodiazepine derivatives as nevirapine analogues. *Eur. J. Med. Chem.*, 36 (2001) 935-949.
- [34] G. K. Nagaraja, V. P. Vaidya, K. S. Rai, K. M. Mahadevan, An Efficient Synthesis of 1,5-Thiadiazepines and 1,5-Benzodiazepines by Microwave-Assisted Heterocyclization, Phosphorus. Sulfur. Silicon. *Relat. Elem.*, 181 (2006) 2797-2806.
- [35] K. Nabih, A. Baouid, A. Hasnaoui, A. Kenz, Highly Regioand Diastereoselective 1,3-Dipolar Cycloaddition of Nitrile Oxides to 2,4-Dimethyl-3H-1,5-Benzodiazepines: Synthesis of Bis[1,2,4-Oxadiazolo][1,5]Benzodiazepine Derivatives. Synth. Commun., 34 (2004) 3565-3572.
- [36] C. W. Kuo, C. C. Wang, V. Kavala, C. F. Yao, Efficient TCT-catalyzed Synthesis of 1,5-Benzodiazepine Derivatives under Mild Conditions. *Molecules.*,13 (2008) 2313-2325.
- [37] M. E. Welsch, S. A. Snyder, B. R. Stockwell, Privileged scaffolds for library design and drug discovery. *Curr. Opin. Chem. Biol.*, 14(3) (2010) 347-361.
- [38] K. A. M. El-Bayouki, Benzo[1,5]thiazepine: Synthesis, Reactions, Spectroscopy, and Applications. *Org. Chem. Int.*, (2013) 1-71.
- [39] L. Richter, C. D. Graaf, W. Sieghart, Z. Varagic, M. Morzinger, I. J. P. Esch, G. F. Ecker, M. Ernst, Diazepambound GABAA receptor models identify new benzodiazepine binding-site ligands. Nat. Chem. Biol., 8(5) (2012) 455-464.
- [40] J.Y. Wang, X. F. Guo, D.X. Wang, Z.T. Huang, and M.X. Wang, A New Strategy for the Synthesis of 1,4-Benzodiazepine Derivatives Based on the Tandem N-Alkylation–Ring Opening–Cyclization Reactions of Methyl 1-Arylaziridine-2-carboxylates with N-[2-Bromomethyl(phenyl)]trifluoroacetamides. *J. Org. Chem.*, 73(5), (2008) 1979–1982.
- [41] X. Ma, X. Zhang, W. Qiu, W. Zhang, B. Wan, J. Evans and W. Zhang, One-Pot Synthesis of Triazolobenzodiazepines Through Decarboxylative [3 + 2] Cycloaddition of Nonstabilized Azomethine Ylides and Cu-Free Click Reactions, *Molecules.*, 24, (2019) 601.
- [42] M. N. Timofeeva, E. A. Petrova, E. A. Mel'gunova, A. Gil, M. A. Vicente & V. N. Panchenko, Reaction Kinetics, Mechanisms and Catalysis, 127 (2019) 41–52.
- [43] G. D. Yadav, A. R. Yadav, Selective Green Synthesis of 1,5-Benzodiazepine over Modified Heteropolyacid as Nanocatalyst: Kinetics and Mechanism. *Ind. Eng. Chem. Res.*, (2013) 52, 50, 17812-17820.
- [44] R. Jamatia, M. Saha and A. K. Pal, An efficient facile and one-pot synthesis of benzodiazepines and chemoselective

- 1,2-disubstituted benzimidazoles using a magnetically retrievable Fe<sub>3</sub>O<sub>4</sub> nanocatalyst under solvent free conditions, *RSC Adv*, 4, (2014) 12826-12833.
- [45] M. Esfandiari, A. K. Abbas, H. S. Alavi, J. S. Ghomi, Synthesis of Benzodiazepines Promoted by CeO<sub>2</sub>/CuO@Nitrogen Graphene Quantum Dots@NH<sub>2</sub> Nanocomposite, *Polycyclic aromatic compounds.*, 40 (2020) 1-6.
- [46] M. Muaoz, G. Pasquale, A. G. Sathicq, G. P. Romanelli, C. I. Cabello and D. Gazzoli, Volcanic ash as reusable catalyst in the green synthesis of 3H-1,5-benzodiazepines, *Green Process Synth.*, 8 (2019) 600–610.
- [47] S. Sarhandi, L. Zare Fekri, E. Vessally, Ultrasound Assisted Chromatography-Free Synthesis of Triazolo [1,2-a]Indazole-Triones in the Presence of 1,4-Diazabicyclo[2.2.2] Octanium Diacetate as an Environmentally Friendly Green Media, *polycyclic aromatic compounds.*, (2019), 1-11, in press.
- [48] B. M. Reddy, P. M. Sreekanth, An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Lett., 44 (2003) 4447-4449.
- [49] J. M. Yadav, D. Pathak, Synthesis and biological evaluation of some newer 1,5-benzodiazepine derivatives as potential anticonvulsant agents. Der Pharma. Sinica., 4(4) (2013) 81-90.
- [50] S. A. Majid, W. A. Khanday, R. Tomar, Synthesis of 1,5-benzodiazepine and its derivatives by condensation reaction using H-MCM-22 as catalyst. *J. Biomed. Biotechnol.*, (2012) 1-6.
- [51] R. Varala, R. Enugala, S. R. Adapa, p-Nitrobenzoic Acid Promoted Synthesis of 1,5-Benzodiazepine Derivatives. J. Braz. Chem. Soc., 18(2) (2007) 291-296.
- [52] Bilal A. Ganai, Kumar S, Charanjeet S. Andotra, Kamal K. Kapoor, SbCl<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>-Catalyzed, Solvent-Free, One-Pot Synthesis of Benzo[b]1,4-diazepines, *Synth Commun.* 36, (2006) 803.
- [53] Sucheta K, Vital Rao B. Microwave induced solvent-free synthesis of substituted 1,5-benzodiazepine derivatives, *Indian J Chem.* 44B, (2005) 2152-2154.

- [54] M. A. Alibeik, Z. Zaghaghi, I. M. Baltork, Alumina Supported 12-Tungstophosphoric Acid as an Efficient and Reusable Catalyst for Synthesis of 1,5-Benzodiazepines, *J. Chinese Chem. Soc.*, 55, (2008) 1-4.
- [55] A. Shaabani, A. Maleki, A Fast and Efficient Method for the Synthesis of 1,5-Benzodiazepine Derivatives Under Solvent-Free Conditions. *Iran. J. Chem. Chem. Eng.*, 26, (2007) 93-97.
- [56] A. K. Yadav, M. Kumar, T. Yadav, R. Jain, A novel one pot room temperature ionic liquid mediated synthesis of 1,5-benzodiazepine ribofuranosides. Indian J. Chem., 49B (2010) 461-468.
- [57] M. S. Bhatia, P. B. Choudhari, K. B. Ingale, B. E. Zarekar, Synthesis, screening and QSAR studies of 2,4-disubstituted 1,5-benzodiazepine derivatives. Oriental J. Chem., 24(1) (2008) 147-152.
- [58] R. Singh, N. Kumar, M. Yadav, D. Pathak, Microwave-Assisted, Solvent Free and Parallel Synthesis of Some Newer 2, 4-Disubstituted 1, 5- Benzodiazepines of Biological Interest. *Int. J. Pharma. Sci. Drug Res.*, 5(3) (2013) 88-95.
- [59] P. Narendiran, S. Guhanathan, Int. J. Frontiers Sci. Technol., 3(1) (2015).
- [60] N. A. A. Jaber, A. S. A. Bougasim, M. M. S. Karah, Study of Michael addition on chalcones and or chalconeanalogues. *J. Saudi Chem. Soc.*, 16 (2012) 45-53.
- [61] L. Chen, T. V. W. Janssens, M. Skoglundh, H. Gronbeck, Interpretation of NH<sub>3</sub>-TPD Profiles from Cu-CHA Using First-Principles Calculations. *Topics in Catalysis.*, 62 (2019) 93-99.
- [62] A.K. Saidfar, M. Alizadeh, S. Pirsa, Application of Nanosized Poly (N-methyl pyrrole-pyrrole) Fiber to the Headspace Solid-Phase Microextraction of Volatile Organic Compounds from Yogurt. *J. Chem. Lett.* 1., 1 (2020) 39-46.

# **How to Cite This Article**

Deepak Tayde; Machhindra Lande. "Synthesis of 2, 4 disubstituted 1, 5 benzodiazepines promoted by efficient Silica-Alumina Catalyst". Chemical Review and Letters, 4, 1, 2021, 30-36. doi: 10.22034/crl.2020.255303.1089.