1, 4-Diazabicyclo[2.2.2]octanium diacetate: An effective, mild and reusable catalyst for the synthesis of 2,4,5–trisubstituted imidazoles

Document Type : Research Article


Department of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran


1, 4-Diazabicyclo[2.2.2]octanium diacetate supplies an environmentally friendly procedure for the synthesis of 2,4,5-trisubstituted imidazoles through one-pot multicomponent condensation of benzyl or benzoin and ammonium acetate with various aldehydes. These compounds were obtained in high yields and short reaction times. The catalyst could be easily recovered and reused for five cycles with almost consistent activity. All of synthesized compounds were characterized by their physical constant, comparison with authentic samples, IR, 1H NMR, 13C NMR spectroscopy and elemental analysis.

Graphical Abstract

1, 4-Diazabicyclo[2.2.2]octanium diacetate: An effective, mild and reusable catalyst for the synthesis of 2,4,5–trisubstituted imidazoles


[1] K. Anand, Sh. Wakode, Development of Drugs Based on Benzimidazole Heterocycle: Recent Advancement and Insights. Int. J. Chem. Stud. 5 (2017) 350-362.
[2] J. J. Vora, K. P. Trivedi, R. S. Kshatriya, Synthesis and Spectral Studies of 2-mercapto-5-methoxy-1H-benzimidazole: An Imperative Medicinal Intermediate. Der Chemica Sinica. 3 (2012) 76-79.
[3] S. I. Alaqeel, Synthetic approaches to benzimidazoles fromo-phenylenediamine: A literature review. J. Saudi. Chem. Soc. 21 (2017) 229-237.
[4] A. K. Takle, M. J. B. Brown, S. Davies, D. K. Dean, G. Francis, A. Gaiba, A. W. Hird, F. D. King, P. J. Lovell, A. Naylor, A. D. Reith, J. G. Steadman, D. M. Wilson, The identification of potent and selective imidazole-based inhibitors of B-Raf kinase. Bioorg. Med. Chem. Lett. 16 (2006) 378-381.
[5] J. H. M. Lange, H. H. Van Stuivenberg, H. K. A. C. Coolen, T. J. P. Adolfs, A. C. McCreary, H. G. Keizer, H. C. Wals, W. Veerman, A. J. M. Borst, W. de Loof, P.C. Verveer, C. G. Kruse, Bioisosteric Replacements of the Pyrazole Moiety of Rimonabant:  Synthesis, Biological Properties, and Molecular Modeling Investigations of Thiazoles, Triazoles, and Imidazoles as Potent and Selective CB1 Cannabinoid Receptor Antagonists. J. Med. Chem. 48 (2005) 1823-1838.
[6] M. Noolvi, S. Agrawal, H. Patel, A. Badiger, M. Gaba, A. Zambre, Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole. Arab. J. Chem. 7 (2014) 219-226.
[7] R. Mahesh, K. Ramya, H. G. Ashok-Kumar, S. Satyanarayana, Synthesis and characterization of 2-mercapto-N-methyl imidazole substituted benzimidazole derivatives and investigation of their effect on production of plantlets in Oncidium Gower Ramsey
Afr. J. Biotechnol. 14 (2015) 1297-1303.
[8] K. Gullapelli, G. Brahmeshwari, M. Ravichander, U. Kuzuma, Synthesis, antibacterial and molecular docking studies of new benzimidazole derivatives. Egypt. J. basic appl. Sci. 7 (2017) 303-309.
[9] X. Wang, Y. F. Chen, W. Yan, L. L. Lao, Y. H. Ye, Molecules 21 (2016) 1574
[10] P. Picconi, Ch. Hind, Sh. Jamshidi, K. Nahar, M. Clifford, M. E. Wand, J. M. Sutton, K. M. Rahman, Triaryl Benzimidazoles as a new class of antibacterial agents against resistant pathogenic microorganisms. J. Med. Chem. 60 (2017) 6045-6059.
[11] Z. Xiao, F. Lei, X. Chen, X. Wang, L. Cao, K. Ye, W. Zhu, S. Xu, Design, synthesis, and antitumor evaluation of quinoline‐imidazole derivatives. Arch. Pharm. 351 (2018) 1700407- 1700418.
[12] M. J. Newman, J. C. Rodarte, K. D. Benbatoul, S. J. Romano, C. Zhang, S. Krane, E. J. Moran, R. Uyeda, T. R. Dixon, E. S. Guns, L. D. Mayer, Discovery and characterization of OC144-093, a novel inhibitor of P-glycoprotein-mediated multidrug resistance. Cancer Res. 60 (2000) 2964-2972.
[13] M. Nimczik, D. Pemp, F. H. Darras, X. Chen, J. Heilmann, M. Decker, Synthesis and biological evaluation of bivalent cannabinoid receptor ligands based on hCB2R selective benzimidazoles reveal unexpected intrinsic properties. Bioorg. Med. Chem. 22 (2014) 3938-3946.
[14] B. Radziszewski, Ueber die Constitution des Lophins und verwandter Verbindungen. Chem. Ber. 15 (1882) 1493.
[15] F. R. Japp, H. H. Robinson, Constitution des Lophins und des Amarins. Chem. Ber. 15 (1882) 1268.
[16] S. D. Jadhave, N. D. Kokare, S. D. Jadhave, Phosphomolybdic acid catalyzed facile one‐pot synthesis of 2,4,5‐triaryl‐1H‐imidazoles from benzil and aromatic aldehydes. J. Heterocycl. Chem. 45 (2008) 1461-1464.
[17] S. D. Sharma, P. Hazarika, Konwar D. An efficient and one-pot synthesis of 2,4,5-tri substituted and 1,2,4,5-tetra substituted imidazoles catalysed by InCl3·3H2O. Tetrahedron Lett. 49 (2008) 2216-2220.
[18] Z. Tavakoli, M. Bagherneghad, K. Niknam, Synthesis of 1,2,4,5‐tetrasubstituted imidazoles using Sulfuric acid ([3‐(3‐Silicapropyl)sulfanyl]propyl]ester as a recyclable solid acid. J. Heterocycl. Chem. 49 (2012) 634-639.
[19] D. Kumar, D. N. Kommi, A. R. Patel, A. K. Chakraborti, Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri- and tetrasubstituted imidazoles. Green Chem. 14 (2012) 2038-2049.
[20] V. Kannan, K. Sreekumar. Clay supported titanium catalyst for the solvent free synthesis of tetrasubstituted imidazoles and benzimidazoles. J. Mol. Catal. A: Chem. 376 (2013) 34-39
[21] X. B. Wang, He L., Jian T.Y., Ye S. Cyclic phosphoric acid catalyzed one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Chin. Chem. Lett. 2012, 23: 13-16.
[22] Fallah N. S., Mokhtary M. Tin oxide nanoparticles (SnO2-NPs): an efficient catalyst for the one-pot synthesis of highly substituted
imidazole derivatives. J. Taibah. Univ. Sci. 9 (2015) 531-537.
[23] R. Mohammadi, A. Sajjadi, Fe3O4 magnetic nanoparticles (Fe3O4 MNPs): A magnetically reusable catalyst for synthesis of Benzimidazole compounds. J. Med. Chem. Sci. 2 (2019) 55-58.
[24] S. Gupta, M. Lakshman, Magnetic nano Cobalt ferrite: An efficient recoverable catalyst for synthesis of 2,4,5-trisubstituted imidazoles. J. Med. Chem. Sci. 2 (2019) 51-54.
[25] M. K. Mohammadi, F. Cheldavi, Microwave-assisted synthesis of phenanthro[9, 10-d]imidazole derivatives under solvent-free and one pot conditions. J. Med. Chem. Sci. 3 (2020) 41-47.
[26] F. Rostami-Charati, Z. Hossaini, F. Sheikholeslami-Farahani, Z. Azizi, S. Amir Siadati, Synthesis of 9H-furo [2, 3-f] Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. Chem. high throughput screen. 18(2015) 872-880.‏
[27] Z. Hossaini, F. Rostami-Charati, M. Ghambarian, S. A. Siadati, Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkyl phosphites or triaryl phosphites in water. Phos. Sulfur Silicon Related Elements, 190 (2015) 1177-1182.‏
[28] L. Zare, N. O. Mahmoodi, A. Yahyazadeh, M. Mamaghani, K. Tabatabaeian, An efficient chemo-and regioselective three-component synthesis of pyridazinones and phthalazinones using activated KSF. Chin. Chem. Lett. 21 (2010) 538-541.
[29] L. Zare Fekri, M. Nikpassand, S. Pourmirzajani, B. Aghazadeh, Synthesis and characterization of amino glucose-functionalized silica-coated NiFe2O4 nanoparticles: A heterogeneous, new and magnetically separable catalyst for the solvent-free synthesis of pyrano [3, 2-c] chromen-5 (4H)-ones. RSC Adv. 8 (2018) 22313-22320.
[30] L. Z. Fekri, M. Nikpassand, S. N. Khakshoor, Green, effective and chromatography free synthesis of benzoimidazo [1, 2-a] pyrimidine and tetrahydrobenzo [4, 5] imidazo [1, 2-d] quinazolin-1 (2H)-one and their pyrazolyl moiety using Fe3O4@ SiO2@ L-proline reusable catalyst in aqueous media. J. Orgmet. Chem. 894 (2019) 18- 27.
[31] L. Z. Fekri, S. Sarhandi, E. Vessally, Ultrasound assisted 1, 4-diazabicyclo [2.2. 2] octaniumdiacetate multicomponent synthesis of benzodiazepines: A novel, highly efficient and green protocol. Acta Chim. Slov. 65 (2018) 246-252.
[32] M Nikpassand, L Zare Fekri, Synthesis of bis coumarinyl methanes using of potassium 2-oxoimidazolidine-1, 3-diide as a novel, efficient and reusable catalyst. Chem. Rev. Lett. 2 (2019) 7-12.
[33] L. Z. Fekri, M. Nikpassand, Ultrasound-promoted Friedel-Crafts acylation of arenes and cyclic anhydrides catalyzed by ionic liquid of [bmim]Br/AlCl3. Russ. J. Gen. Chem. 84 (2014) 1825-1829.
[34] L. Z. Fekri, R. Maleki. KIT‐6 Mesoporous silica‐coated magnetite nanoparticles: A highly efficient and easily reusable catalyst for the synthesis of benzo[d]imidazole derivatives. J. Hetrocycl. Chem. 54 (2017) 1167-1171.
[35] L. Z. Fekri, M. Nikpassand, R. Maleki, 1, 4-Diazabicyclo [2.2. 2] octanium diacetate: As an effective, new and reusable catalyst for the synthesis of benzo [d] imidazole. J. Mol. Liq. 222 (2016) 77-81.‏
[36] J. Wang, R. Mason, D. V. Derveer, F. Feng, X. R. Bu, Convenient preparation of a novel class of imidazo[1,5-a]pyridines:  Decisive role by ammonium acetate in chemoselectivity. J. Org. Chem. 68 (2003) 5415-5418.
[37] D. I. MaGee, M. Bahramnejad, M. Dabiri, Highly efficient and eco-friendly synthesis of 2-alkyl and 2-aryl-4,5-diphenyl-1H-imidazoles under mild conditions. Tetrahedron Lett. 54 (2013) 2591-2594.
[38] S. B. Sapkal, K. F. Shelke, S. S. Sonar, B. B. Shingate, M. S. Shingare, Acidic ionic liquid
catalyzed environmentally friendly synthesis of benzimidazole derivatives. Bull. Catal. Soc. India 2 (2009) 78-83.
[39] W. Senapak, R. Saeeng, J. Jaratjaroonphong, V. Promarak, U. Sirion, Metal-free selective synthesis of 2-substituted benzimidazoles catalyzed by Brönsted acidic ionic liquid: Convenient access to one-pot synthesis of N-alkylated 1, 2-disubstituted benzimidazoles. Tetrahedron 75 (2019) 3543-3552.
[40] Bhavsar A., Makone S., Shirodkar S. Int. J. Adv. Res. Sci. Eng. Tech. 2016, 3: 2485
[41] M. Dabiri, P. Salehi, M. Baghbanzadeh, M. Shakouri Nikcheh, Synth. Commun. 38 (2008) 4247.