Experimental and computational investigations of some new cabamothioate compounds

Document Type : Research Article

Authors

1 Department of Chemistry, Zanjan Branch, Islamic Azad University, P.O. Box 49195-467, Zanjan, Iran

2 Department of Chemistry, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran

Abstract

The new derivatives of S-aryl (trichloroacetyl) carbamothioate were prepared from a two-component reaction of 2-naphthalenethiol or thiophenol derivatives and trichloroacetyl isocyanate in CH2Cl2 at room temperature at high yields. The reaction was a simple and efficient procedure with high yield and available stating materials in a short time for the synthesis of these compounds that no side reactions were observed. The structures of the products were confirmed by IR, 1H NMR, 13C NMR spectroscopy, and elemental analysis. Quantum theoretical calculations for the three structures of compounds (3a, 3b and 3c) were performed using the G3MP2, LC-ωPBE, MP2, and B3LYP methods with the 6-311+G(d,p) basis set. Geometric parameters of optimized the structures were compared with the experimental measurements. The structures of the products were confirmed by IR, 1H NMR, 13C NMR, and elemental analysis. IR spectra data and 1H NMR and 13C NMR chemical shifts computations of the compounds were calculated. Frontier molecular orbitals (FMOs), total density of states (DOS), thermodynamic parameters and molecular electrostatic potentials (MEP) of the title compounds were investigated by theoretical calculations. Molecular properties such as the ionization potential (I), electron affinity (A), chemical hardness (η), electronic chemical potential (μ) and electrophilicity (ω) were investigated for the structures. Consequently, there was an excellent agreement between experimental and theoretical results.

Graphical Abstract

Experimental and computational investigations of some new cabamothioate compounds

Keywords


[1] Q. Meng, H. Luo, Y. Liu, W. Li, W. Zhang and Q. Yao, Synthesis and evaluation of carbamate prodrugs of SQ109 as antituberculosis agents. Bioorg. Med. Chem. Lett., 23 (2009) 2808–2810.
[2] J. M. Ferriz and J. Vinsova, Prodrug design of phenolic drugs. Curr. Pharm. Des., 16 (2010) 2033–2052.
[3] P. N. Solyev, A. V. Shipitsin, I. L. Karpenko, D. N. Nosik, L. B. Kalnina, S. N. Kochetkov, M. K. Kukhanova and M. V. Jasko, Synthesis and anti‐HIV properties of new carbamate prodrugs of AZT. Chem. Biol. Drug Des., 80 (2012) 947-952.
[4] Y. H. Yang, A. Voak, S. R. Wilkinson and L.Q. Hu, Design, synthesis, and evaluation of potential prodrugs of DFMO for reductive activation. Bioorg. Med. Chem. Lett., 22 (2012) 6583-6586.
[5] C. Gomez, P. Ponien, N. Serradji, A. Lamouri, A. Pantel, E. Capton, V. Jarlier, G. Anquetin and A. Aubry, Synthesis of gatifloxacin derivatives and their biological activities against mycobacterium leprae and mycobacterium tuberculosis. Bioorg. Med. Chem., 21 (2013) 948-956.
[6] (a) A. Goel, S. J. Mazur, R. J. Fattah, T. L. Hartman, J. A. Turpin, M. Huang, W. G. Rice, E. Appela and J. K. Inman, Benzamide-based thiolcarbamates: a new class of HIV-1 NCp7 inhibitors. Bioorg. Med. Chem. Lett., 12 (2002) 767- 770. (b) T. F. Wood and J. H. Gardner, The synthesis of some dialkylaminoalkyl arylthiourethans and thioureas. J. Am. Chem. Soc., 63 (1941) 2741- 2742.
[7] A. W. Erian and S. M. Sherif, The chemistry of thiocyanic esters. Tetrahedron, 55 (1999) 7957- 8024.
[8] T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 3rd ed.; Wiley-Interscience: New York, 1999.
[9] N. L. Benoiton, Chemistry of Peptide Synthesis; CRC Press: Boca Raton, 2006.
[10] H. Tilles, Thiolcarbamates. preparation and molar refractions. J. Am. Chem. Soc., 81 (1959) 714- 727.
[11] (a) T. Mizuno, I. Nishiguchi and N. Sonoda, Novel synthesis of S-alkyl thiocarbamates from amines, carbon monoxide, elemental sulfur, and alkyl halides in the presence of a selenium catalyst. Tetrahedron, 50 (1994) 5669- 5680. (b) T. Mizuno, I. Nishiguchi, T. Okushi and T. Hirashima, Facile synthesis of S-alkyl thiocarbamates through reaction of carbamoyl lithium with elemental sulfur. Tetrahedron Lett., 32 (1991) 6867- 6868.
[12] (a) M. S. Newman and H. A. Karnes, The conversion of phenols to thiophenols via dialkylthiocarbamates. J. Org. Chem., 31 (1966) 3980- 3984. (b) R. E. Hackler and T. W. Balko, [3,3]-Sigmatropic rearrangement of allylic dialkylthiocarbamates. J. Org. Chem., 38 (1973) 2106- 2109
[13] W. D. Jones, K. A. Reynolds, C. K. Sperry, R. J. Lachicotte, S. A. Godelski and R. R. Valente, Synthesis of S-alkyl and S-aryl thiocarbamates, one-pot two-step general synthesis. Organometallics, 19 (2000) 1661-1669.
[14] J. Jacob, K. A. Reynolds, W. D. Jones, S. A. Goldeski and R. R. Valente, Nickel-mediated selective carbonylation routes to thiocarbamates. Organometallics, 20 (2001) 1028- 1031.
[15] H. Kuniyashu, H. Hiraike, M. Morita, A. Tanaka, K. Sugoh and H. Kurosawa, Palladium-catalyzed azathiolation of carbon monoxide. J. Org. Chem., 64 (1999) 7305- 7308.
[16] (a) A. Ramazani, Y. Ahmadi, M. Rouhani, N. Shajari and A. Souldozi, The reaction of (N-isocyanimino) triphenylphosphorane with an electron-poor α-haloketone in the presence of aromatic carboxylic acids: A novel three-component reaction for the synthesis of disubstituted 1,3,4-oxadiazole derivatives. Heteroat. Chem., 21 (2010) 368- 372. (b) N. Shajari and A. Ramazani, Synthesis of heterocyclic pentavalent phosphorus compounds from phosphitr derivatives and indane-1,2,3-trione. Phosphorus, Sulfur Silicon Relat. Elem., 185 (2010) 1850- 1857.
[17] (a) A. Ramazani, N. Shajari, A. Mahyari and Y. Ahmadi, A novel four-component reaction for the synthesis of disubstituted 1,3,4-oxadiazole derivatives. Mol. Divers.,15 (2011) 521- 527. (b) N. Shajari, A. R. Kazemizadeh and A. Ramazani, Synthesis of 5-aryl-N -(trichloroacetyl)-1,3,4-oxadiazole-2-carboxamide via three-component reaction of trichloroacetyl isocyanate, (N -isocyanimino)triphenylphosphorane, and benzoic acid derivatives. Turk. J. Chem., 39 (2015) 874- 879.
[18] (a) S. Dixit, M. Patil and N. Agarwal, Ferrocene catalysed heteroarylation of BODIPy and reaction mechanism studies by EPR and DFT methods. RSC Adv., 6 (2016) 47491- 47497. (b) L. Zheng, Y. Qiao, M. Lu and J. Chang, Theoretical investigations of the reaction between 1,4-dithiane-2,5-diol and azomethine imines: mechanisms and diastereoselectivity. J. Org. Biomol. Chem., 13 (2015) 7558- 7569.
[19] (a) A. Bekhradnia and P. O. Norrby, New insights into the mechanism of iron-catalyzed cross-coupling reactions. Dalton Trans., 44 (2015) 3959-3962. (b) D. Duca, G. L. Manna and M. R. Russo, Computational studies on surface reaction mechanisms: Ethylene hydrogenation on platinum catalysts. Phys Chem Chem Phys., 1 (1999) 1375-1382.
[20] (a) S. G. Smith and J. M. Goodman, Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc.,132 (2010) 12946- 12959. (b) Z. Yang, P. Yu and K. N. Houk, Molecular dynamics of dimethyldioxirane C–H oxidation. J. Am. Chem. Soc., 138 (2016) 4237- 4242.
[21] (a) P. E. Hansen and J. Spanget-Larsen, Structural studies on Mannich bases of 2-hydroxy-3,4,5,6-tetrachlorobenzene. An UV, IR, NMR and DFT study. A mini-review, J. Mol. Struct., 1119 (2016) 235- 239. (b) S. Demir, A. O. Sarioǧlu, S. Güler, N. Dege and M. Sönmez, Synthesis, crystal structure analysis, spectral IR, NMR UV–Vis investigations, NBO and NLO of 2-benzoyl-N-(4-chlorophenyl)-3-oxo-3-phenylpropanamide with use of X-ray diffractions studies along with DFT calculations. J. Mol. Struct., 1118 (2016) 316- 324.
[22] (a) P. Norouzi and R. Ghiasi, Theoretical understanding the effects of external electric field on the hydrolysis of anticancer drug titanocene dichloride. J. Appl. Spectrosc., (2020).(b) E. Sheikh Ansari, R. Ghiasi and A. Forghaniha, Computational investigation into the solvent effect on the Diels-Alder reaction of isobenzofuran and ethylene. Chem. Methodol., 4 (2020) 220-233.
[23] (a) R. Ghiasi and A. Peikari, Computational investigation of solvent effect on the structure, spectroscopic properties (13C, 1H NMR and IR, UV), NLO properties and HOMO–LUMO analysis of Ru(NHC)2Cl2(=CH-p-C6H5) complex. Phys. Chem. Liq., 55 (2017), 421-431. (b) N. Shajari, R. Ghiasi, N. Aghaei, M. Soltani and A. R. Kazemizadeh, Synthesis and theoretical studies of [2-amino-3-(ethoxycarbonyl)-1, 4-dihydro-1-phenyl-4-pyridinyl] ferrocene derivatives. Int. J. New Chem., (2020).
[24] (a) R, Ghiasi and A. Peikari, Solvent effect on the stability and properties of platinum-substituted borirene and boryl isomers: The polarizable continuum model. Russ. J. Phys. Chem. B., 90 (2016) 2211-2216. (b) G. R. Ghane Shalmani, R. Ghiasi and A. Marjani, Substituent effects on the structure and properties of (para-C5H4X)Ir(PH3)3 complexes in the ground state (S0) and first singlet excited state (S1): DFT and TD-DFT investigations. J. Chem. Res., (2020).
[25] (a) S. Hossien Saraf and R. Ghiasi, Effect of the solvent polarity on the optical properties in the (OC)5Cr=(OEt)(Ph) complex: A quantum chemical study. Russ. J. Phys. Chem. A., 94 (2020) 1047- 1052. (b) R. Ghiasi, H. Pasdar and F Irajizadeh, Understanding the structure, substituent effect, natural bond analysis and aromaticity of osmabenzyne: A DFT stuzdy. J. Chil. Chem. Soc., 60 (2015) 2740-2746.
[26] (a) A. Rezaei, R. Ghiasi and A. Marjani, Strong chemisorption of E2H2 and E2H4 (E = C, Si) on B12N12 nano-cage. J. Nanostructure Chem., 10 (2020) 179-191. (b) N. Shajari and R. Ghiasi, Theoretical study of tautomerization in 1,5-dimethyl-6-thioxo-1,3,5-triazinane-2,4-dione. J. Struct. Chem., 59 (2018) 541-549.
[27] J. L. Kellie and S. D. Wetmore, Selecting DFT methods for use in ONIOM optimizations of enzyme active sites. Can. J. Chem., 91 (2013) 559- 572.
[28] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov and J. A. Pople, Gaussian-3 theory using reduced Mo/ller-Plesset order. J. Chem. Phys., 110 (1999) 4703-4709.
[29] C. Møller and M. S. Plesset, Note on an approximation treatment for many-electron systems. Phys. Rev., 46 (1934) 618- 622.
[30] D. Cremer, In Encyclopedia of Computational Chemistry; Schleyer, P. v. R., Ed.; Wiley: New York, 1998.
[31] R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys., 72 (1980) 650- 654.
[32] (a) J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss and L. Radom, Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys., 107 (1997) 5016- 5021. (b) L. A. Curtiss, M. P. McGrath, J.-P. Blaudeau, N. E. Davis, R. C. Jr. Binning and L. Radom, Extension of Gaussian‐2 theory to molecules containing third‐row atoms Ga–Kr. J. Chem. Phys., 103 (1995) 6104- 6113.
[33] M. J. Frisch, G, W. Trucks and H. B. Schlegel, Gaussian 03, Revision B03, Gaussian Inc, PA: Pittsburgh 2003.
[34] L. Shiri, D. Sheikh, A. R. Faraji, M. Sheikhi and S. Seyed Katouli, Selective oxidation of oximes to their corresponding carbonyl compounds by sym-collidinium chlorochromate (S-COCC) as a efficient and novel oxidizing agent and theoretical study of NMR shielding tensors and thermochemical parameters. Org. Chem., 11 (2014) 18- 28.
[35] A. Frisch, A. B. Nielson and A. J. Holder, GAUSSVIEW User Manual, Gaussian Inc, PA: Pittsburgh, 2000.
[36] S. Majedi, F. Behmagham and M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett. 1 (2020) 19-24.
[37] F. Piryaei, N. Shajari and H. Yahyaei, Efficient ZrO(NO3)2.2H2O catalyzed synthesis of 1H-indazolo [1,2-b] phthalazine-1,6,11(13H)-triones and electronic properties analyses, vibrational frequencies, NMR chemical shift analysis, MEP: A DFT study. Heteroat. Chem., 2020.
[38] S. Guidara, H. Feki and Y. Abid, Vibrational spectral studies and non-linear optical properties of l-leucine l-leucinium picrate: A Density Functional Theory approach. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 115 (2013) 437-444.
[39] S. Shahab, L. Filippovich, M. Sheikhi, R. Kumar, E. Dikusar, H. Yahyaei and A. Muravsky, Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl) aniline in PVA matrix. J. Mol. Struct., 1141 (2017) 703-709.
[40] H. Yahyaei, A. R. Kazemizadeh and A. Ramazani, Synthesis and chemical shifts calculation of α-Acyloxycarboxamides derived from indane-1,2,3-trione by DFT and HF methods. Chin. J. Struct. Chem. 31 (2012) 1346-1356.
[41] K. G. Vipin Das, C. Yohannan Panicker, B. Narayana, P. S. Nayak, B. K. Sarojini and A. A. Al-Saadi, FT-IR, molecular structure, first order hyperpolarizability, NBO analysis, HOMO and LUMO and MEP analysis of 1-(10H-phenothiazin-2-yl)ethanone by HF and density functional methods. Acta. A. Mol. Biomol. Spectrosc., 135 (2015) 162- 171.
[42] S. Shahab, L. Filippovich, M. Sheikhi, H. Yahyaei, M. Aharodnikova, R. Kumar and M. Khaleghian, Spectroscopic (polarization, excitedstate, FT-IR, UV/Vis and 1H NMR) and thermophysical investigations of new synthesized azo dye and its application in polarizing film. Am. J. Mater. Synth. process., 5 (2017) 17-23.
[43] M. R. Jalali Sarvestani and S. Majedi, A DFT study on the interaction of alprazolam with fullerene (C20). J. Chem. Lett. 1 (2020) 32-38.
[44] M. R. Jalali Sarvestani and Z. Doroudi, Fullerene (C20) as a potential sensor for thermal and electrochemical detection of amitriptyline: A DFT study. J. Chem. Lett. 1 (2020) 63-68.
[45] S. Shahab, L. Filippovich, M. Sheikhi, R. Kumar, E. Dikusar, H. Yahyaei and A. Muravsky, Polarization, excited states, trans-cis properties and anisotropy of thermal and electrical conductivity of the 4-(phenyldiazenyl)aniline in PVA matrix. J. Mol. Struct., 1141 (2017) 703-709.