Procarbazine adsorption on the surface of single walled carbon nanotube: DFT studies

Document Type : Research Article


1 Young Researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Yadegar-e-Imam Khomeini (RAH) Shahre-rey Branch, Islamic Azad University, Tehran, Iran

3 Department of Inorganic Chemistry, Faculty of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran


< p>In this research, the performance of single-walled carbon nanotube (SWCN) as a sensor and nanocarrier for procarbazine (PC) was investigated by infra-red (IR), natural bond orbital (NBO), frontier molecular orbital (FMO) computations. All of the computations were done using the density functional theory method in the B3LYP/6-31G (d) level of theory The calculated negative values of adsorption energy, enthalpy changes, Gibbs free energy changes showed the PC interaction with SWCN is exothermic, spontaneous and experimentally possible. The increasing of specific heat capacity (CV) of SWCN after adsorption of PC showed the thermal conductivity improved during the interaction process and this nanostructure is an excellent sensing material for the detection of PC. The NBO results demonstrate in all of the evaluated conformers a chemical bond with SP3 hybridization is formed between the medicine and SWCN. The great values of thermodynamic constants showed the adsorption process is irreversible and SWCN is not a suitable nanocarrier for delivery of PC. The density of states (DOS) spectrums showed the bandgap of SWCN decreased sharply after the adsorption of PC and this nanomaterial can be used as a sensor for electrochemical detection of PC.

Graphical Abstract

Procarbazine adsorption on the surface of single walled carbon nanotube: DFT studies


[1] X. He, T. T. Batchelor, S.Grossman, J. G. Supkoafor, Determination of procarbazine in human plasma by liquid chromatography with electrospray ionization mass spectrometry. J. Chromatogr. B., 799 (2004) 281-291.
[2] R. M. Gorsen, A. J. Weiss, R. W. Manthei, Analysis of Procarbazine and Metabolites by Gas Chromatography-Mass Spectrometry. J. Chromatogr., 221 (1980) 309-318.
[3] P. Rainer, B. Frank, R. Ralf, M. Michael, Plasma kinetics of procarbazine and azo-procarbazine in humans. Anti-Cancer Drugs., 17 (2006) 75-80.
[4] D. F. Lehmann, T. E. Hurteau, N. Newman, T. E. Coyle, Anticonvulsant usage is associated with an increased risk of procarbazine hypersensitivity reactions in patients with brain tumors. Clin. Pharmacol. Ther., 62 (1997) 225-229.
[5] S. Clifford Schold, T. P. Brent, E. Hofe, H. S. Friedman, S. Mitra, D. D. Bigner, J. A. Swenberg, D.V.M., P. Kleihues, M.D. 1O6-Alkylguanine-DNA alkyltransferase and sensitivity to procarbazine in human brain-tumor xenografts. Superlattices Microstruct., 70 (1989) 573-577.
[6] B. Farhang Rik, R. Ranjineh Khojasteh, R. Ahmadi, M. Karegar Razi, Evaluation of C60 nano-structure performance as nano-carriers of procarbazine anti-cancer drug using density functional theory methods. Iran. Chem. Commun., 7 (2019) 405-414.
[7] A. Taherpour, A. Hassani Daramroudi, R. Kariminya, Theoretical study of diffusion flow of anticancer medicines through single-wall armchair (10, 10) carbon nanotube. J Control Release., 1 (2019) 56-61.
[8] F. Simon, H. Peterlik, R. Pfeiffer, J. Bernardi, H. Kuzmany, Fullerene release from the inside of carbon nanotubes: A possible route toward drug delivery. Chem. Phys. Lett., 445 (2007) 288-292.
[9] M.Gallo, A. Favila, D. G. Mitnik, DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem. Phys. Lett., 447 (2007) 105-109.
[10] R. Ahmadi, M. Pirahan-Foroush, Ab initio studies of fullerene effect on chemical properties of naphazoline drop. Ann. Mil. Health. Sci. Res., 12 (2014) 86-90.
[11] J. Shi, Y. Liu, L.Wang, J. Gao, J. Zhang, X.Yu, Ma R. R. Liu , Z. Zhang, A tumoral acidic pH-responsive drug deliv, ery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta. Biomater., 10 (2014) 1280-1291.
[12] M. K. Hazrati, N. L. Hadipour, Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: A first-principles study. Phys. Lett., 380 (2016), 937-941.
[13] Ö.Alver, M.Bilge, N.Atar, C.Parlak, M. ┼×enyel, Interaction mechanisms and structural properties of MC19 (M=Si and Al) fullerenes with chlorophenylpiperazine isomers. J. Mol. Liq., 231(2017) 202-205.
[14] R. Ahmadi, T.Boroushaki, M. Ezzati, Study on effect of addition of nicotine on nanofullerene structure C60 as a medicine nanocarrier. Orient. J. Chem., 28 (2012) 773-9.
[15] J.Lenik, C. Wardak, Characteristic of a new sensor for indomethacin determination. Procedia. Eng., 47 (2012) 144-147.
[16] T. Baciu, I. Botello, F. Borrull, M. Calull, C. Aguilar, Capillary electrophoresis and related techniques in the determinationof drugs of abuse and their metabolites. Trends Anal. Chem, 74(2015) 89-108.
[17] M. R. Moeller, S. Steinmeyer, T.Kraemer, Determination of drugs of abuse in blood. J. Chromatogr. B, 713(1998) 91-109.
[18] K. Vytras, The use of ion-selective electrodes in the determination of drug substances. J. Pharm. Biomed. Anal., 7(2002) 789-812.
[19] M. Eslami, M. Moradi, R. Moradi, Physica. E. LowDimens. Syst. Nanostruct, 87(2017) 186-191.
[20] S.Bashiri, E.Vessally, A. Bekhradnia, A. Hosseinian, L. Edjlali, Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum., 136 (2016) 156-162.
[21] nanotube Modeler J. Crystal. Soft., 2014 software.
[22] GaussView, Version 6.1, R. Dennington, T. A. Keith, J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.
[23] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
[24] N. M. O'Boyle, A. L. Tenderholt, K. M. Langner, A Library for Package-Independent Computational Chemistry Algorithms. J. Comp. Chem., 29 (2008) 839-845.
[25] R. Ahmadi, M. R. Jalali Sarvestani, Adsorption of Tetranitrocarbazole on the Surface of Six Carbon-Based Nanostructures: A Density Functional Theory Investigation. Phys. Chem. B., 14 (2020) 198-208.
[26] M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of TNT on the surface of pristine and N-doped carbon nanocone: A theoretical study. Asian J. Nanosci. Mater., 3 (2020) 103-114.
[27] M. R. Jalali Sarvestani, M. Gholizadeh Arashti, B. Mohasseb, Quetiapine Adsorption on the Surface of Boron Nitride Nanocage (B12N12): A Computational Study. Int. J. New. Chem., 7 (2020) 87-100.
[28] M. R. Jalali Sarvestani, R. Ahmadi, Investigating the Complexation of a recently synthesized phenothiazine with Different Metals by Density Functional Theory. Int. J. New. Chem., 4 (2017) 101-110.
[29] M. R. Jalali Sarvestani, R. Ahmadi, Adsorption of Tetryl on the Surface of B12N12: A Comprehensive DFT Study. Chem. Methodol., 4 (2020) 40-54.
[30] S. Majedi, F. Behmagham, M. Vakili, Theoretical view on interaction between boron nitride nanostructures and some drugs. J. Chem. Lett., 1 (2020) 19-24.
[31] H. G. Rauf, S. Majedi, E. A. Mahmood, M. Sofi, Adsorption behavior of the Al- and Ga-doped B12N12 nanocages on COn (n=1, 2) and HnX (n=2, 3 and X=O, N): A comparative study. Chem. Rev. Lett., 2 (2019) 140-150.
[32] R. A. Mohamed, U. Adamu, U. Sani, S. A. Gideon, A. Yakub, Thermodynamics and kinetics of 1-fluoro-2-methoxypropane vs Bromine monoxide radical (BrO): A computational view. Chem. Rev. Lett., 2 (2019) 107-117.
[33] S. Majedi, H. G. Rauf, M. Boustanbakhsh, DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues. Chem. Rev. Lett. 2 (2019) 176-186.
[34] R. Moladoust, Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring. Chem. Rev. Lett., 2 (2019) 151-156.