Effects of ZnO nanoparticles and Kaolin in combination with NeemAzal-T/S against Bemisia tabaci and its parasitoid Eretmocerus mundus on cotton

Document Type : Research Article

Authors

1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Plant Protection Department, Agriculture Faculty, Urmia University

Abstract

The cotton whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an important pest of cotton which by transmitting plant pathogenic viruses cause damage and reduce lint quality. To reduce the use of chemical insecticides, effects of ZnO nanoparticles, Kaolin alone or in pairwise combination with NeemAzal-T/S against egg and second instar nymph of B. tabaci and pupae of its parasitoid Eretmocerus mundus Mercet were evaluated. The LC50 values of ZnO NPs, Kaolin and NeemAzal-T/S against eggs and nymphs of B. tabaci were 7.49 mg L-1, 24.89 g L-1, 6.83 mg L-1 AZA and 6.93 mg L-1, 18.36 g L-1 and 6.00 mg L-1 AZA 3 days after treatment, respectively. The LC50 values of ZnO NPs, Kaolin and NeemAzal-T/S against E. mundus were 11.30 mg L-1, 41.59 g L-1, 36.90 mg L-1 AZA, respectively 3 days after treatment. In the laboratory conditions, ZnO + NeemAzal and Kaolin + NeemAzal exerted a higher level of control on eggs and nymphs of the pest than either alone, while they had a lower level of negative effects on the parasitoid pupae, too. In the field conditions and at 7 DAT, Kaolin + NeemAzal was the most effective treatment on eggs of the pest, causing a 67.43% reduction, while NeemAzal-T/S was the most effective treatment on nymph (86.52% reduction), which was not different with ZnO + NeemAzal and Kaolin + NeemAzal. NeemAzal and ZnO exerted the highest and lowest mortality on pupae of the parasitoid, respectively. Based on the field studies, ZnO NPs at 20 mg L-1, Kaolin at 30 g L-1, NeemAzal-T/S at 15 mg L-1 AZA and mixing equal volumes of NeemAzal-T/S (7.5 mg L-1 AZA)+ZnO NPs (10 mg L-1) and NeemAzal-T/S (7.5 mg L-1 AZA)+ Kaolin (15 g L-1) can be suitable candidates in IPM programs of B. tabaci field condition.

Keywords


[1] M. R. V. Oliveira, T. J. Henneberryb and P. Andersonc, History, current status, and collaborative research projects for Bemisia tabaci. Crop Prot., 20 (2001) 709-723.
[2] F. Martins, M. Soares, I. Oliveira, J. Pereira, D. Lourdes, M. Bastos and P. Baptista, Tolerance and bioaccumulation of copper by the entomopathogen Beauveria bassiana (Bals. Criv.) Vuill. Exposed to various copper-based fungicides. Bull. Environ. Contam. Toxicol., 89 (2012) 53-60.
[3] D. R. Jones, Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol., 109 (2003) 195-219.
[4] M. Faria and S. P. Wraight, Biological Control of Bemisia tabaci with fungi. Crop Prot., 20 (2001) 767-778.
[5] M. Ahmad, M. I. Arif, Z. Ahmad and I. Denholm, Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest Manag. Sci., 58 (2002) 203-208.
[6] F. Sohrabi, P. Shishehbor, M. Saber and M. S. Mosaddegh, Lethal and sublethal effects of imidacloprid and buprofezin on the sweetpotato whitefly parasitoid Eretmocerus mundus (Hymenoptera: Aphelinidae). Crop Prot., 45 (2013) 98-103.
[7] P. A. Stansly, F. J. Calvo and A. Urbaneja, Release rates for control of Bemisia tabaci (Homoptera: Aleyrodidae) biotype “Q” with Eretmocerus mundus (Hymenoptera: Aphelinidae) in greenhouse tomato and pepper. Biol. Control., 35 (2005) 124-133.
[8] P. A. Stansly, P. A. Sanchez, J. M. Rodriguez, F. Canizares, A. Nieto, M. J. Lopez Leyva, M. Fajardo, V. Suarez and A. Urbaneja, Prospects for biological control of Bemisia tabaci (Homoptera: Aleyrodidae) in greenhouse tomatoes of southern Spain. Crop Prot., 23 (2004) 701-712.
[9] D. Stone, B. J. Harper, I. Lynch, K. Dawson and S. L. Harper, Exposure assessment: recommendations for nanotechnology-based pesticides. Int. J. Occup. Environ. Health., 16 (2010), 467-474.
[10] J. Y. Park, M. J. Baek, E. S. Choi, S. Woo, J. H. Kim, T. J. Kim, J. C. Jung, K. S. Chae, Y. Chang and G. H. Lee, Paramagnetic ultra-small gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relativity, optimal particle diameter and in vivo T1 MR images. ACS Nano., 3(2009) 3663-3669.
[11] O. F. Owolade, D. O. Ogunleti and M. O. Adenekan, Titanium Dioxide affects disease development and yield of edible cowpea. Electron. J. Environ. Agric. Food Chem., 7 (2008) 2942-2947.
[12] G. Benelli, Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol. Res., 115 (2016) 23-34.
[13] S. Pirsa, T. Shamusi and E. Moghaddas Kia, Preparing of Bacterial Cellulose/Polypyrrole-Zinc Oxide Nanocomposite Film and Studying its Physicomechanical, Antimicrobial and Antioxidant Properties. Journal of Research and Innovation in Food Science and Technology., 8 (2019) 79-90.
[14] M. Rezaei, S. Pirsa and S. Chavoshizadeh, Photocatalytic/Antimicrobial active film based on Wheat Gluten/ZnO Nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials., 30 (2020) 2654-2665.
[15] S. Pirsa and T. Shamusi, Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulose-polypyrrole-ZnO film. Materials Science and Engineering C., 102 (2019) 798-809.
[16] I. Karimi Sania, S. Pirsa and Ş. Tağı, Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nanocomposite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing., 79 (2019) 106004.
[17] M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet and M. R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 4 (2009) 634-641.
[18] G. J. Puterka, D. M. Glenn, D. G. Sekutowski, T. R. Unruh and S. K. Jones, Progress toward liquid formulations of particle films for insect and disease control in pear. Environ Entomol., 29 (2000) 329-339.
[19] D. M. Glenn, and G. J. Puterka, Particle films: A new technology for agriculture. Horticultural Reviews., 31 (2005) 1-44.
[20] G. J. Puterka and D. M. Glenn, Kaolin-based particle films for arthropod control. In: J. L. Capinera, editor. Encyclopedia of insects. 2nd ed. Dordretch: Springer; (2008) p. 2075-2080.
[21] M. Porcel, B. Cotes and M. Campos, Biological and behavioral effects of kaolin particle film on larvae and adults of Chrysoperla carnea (Neuroptera: Chrysopidae). Biol Control., 59 (2011) 98-105.
[22] P. Bengochea, F. Amor, R. Saelices, S. Hernando, F. Budia, A. Adan and P. Medina, Kaolin and copper-based products applications: ecotoxicology on four natural enemies. Chemosphere., 91 (2013) 1189-1195.
[23] J. L. Jifon and J. P. Syvertsen, Kaolin particle film applications can increase photosyntesis and water use efficiency of “Ruby Red” grapefruit leaves. J Am Soc Hortic Sci., 128 (2003) 107-112.
[24] P. Melgarejo, J. J. Martínez, F. Hernández, R. Martínez-Font, P. Barrows and A. Erez, Kaolin treatment to reduce pomegranate sunburn. Sci Hortic., 100 (2004) 349-353.
[25] M. J. Smirle, D. T. Lowery and C. L. Zurowski, Influence of mixtures of kaolin particle film and synthetic insecticides on mortality of larval obliquebanded leafrollers (Lepidoptera: tortricidae) from resistant and susceptible populations. J Econ Entomol., 100 (2007) 1831-1835.
[26] E. D. Quintela and C. W. McCoy, Synergistic effect of imidacloprid and two entomopathogenic fungi on the behavior and survival of larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in soil. J. Econ. Entomol., 91 (1998) 110-122.
[27] P. L. Mitchell, R. Gupta, A. K. Singh and P. Kumar, Behavioral and developmental effects of neem extracts on Clavigralla scutellaris (Hemiptera: Heteroptera: Coreidae) and its egg parasitoid, Gryon Fulviventre (Hymenoptera: Scelionidae). J. Econ. Entomol., 97 (2004) 916-923.
[28] P. Kumar, H. M. Poehling and C. Borgemeister, Effects of different application methods of azadirachtin against sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants. J. Appl. Entomol., 129 (2005) 489-497.
[29] P. Kumar and H. M. Poehling, Persistence of soil and foliar azadirachtin treatments to control sweetpotato whitefly, Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomatoes under controlled (laboratory) and field (netted greenhouse) conditions in the humid tropics. J. Pest Sci., 79 (2006) 189-199.
[30] M. C. Mohan, P. Narasimha, N. P. Reddy, U. K. Devi, R. Kongara and H. C. Sharma, Growth and insect assays of Beauveria bassiana with neem to test their compatibility and synergism. Biocontr. Sci. Tech., 17 (2007) 1059-1069.
[31] A. G. S. Cuthbertson, K. F. A. Walters and P. Northing, Susceptibility of Bemisia tabaci immature stages to the entomopathogenic fungus Lecanicillium muscarium on tomato and verbena foliage. Mycopathologia., 159 (2005) 23-29.
[32] M. Muniz and G. Nombela, A new clip-cage for biological studies. Published by EWSN: John Innes Centre, Norwich Research Park, Conley Lane, (2001) Norwich NR4 7UH United Kingdom.
[33] A. Gokce and M. Kubilay, Pathogenicity of Paecilomyces spp. to the Glasshouse Whitefly, Trialeurodes vaporariorum, with Some Observations on the Fungal Infection Process. Turk. J. Agric. For., 29 (2005) 331-339.
[34] C. F. Henderson, and E. W. Tilton, Test with acaricides against the brown wheat mite. J. Econ. Entomol., 48 (1955) 157-161.
[35] Z. Khooshe-Bbast, N. Sahebzadeh, M. Ghaffari-Moghaddam and A. Mirshekar, Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta. Agric. Slov., 107 (2016) 299-309.
[36] I. A. Khan and F. H. Wan, Life history of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) biotype B on tomato and cotton host plants. J. Entomol. Zool. Stud., 3 (2015) 117-121.
[37] L. R. Bestete, J. B. Torres, R. B. B. Silva and C. S. A. Silva-Torres, Water stress and kaolin spray affect herbivorous insects’ success on cotton. Arthropod-Plant Interactions., 10 (2016) 445-453.
[38] G. Liang and T. C. Liu, Repellency of a kaolin particle film, surround, and a mineral oil, sunspray oil, to silverleaf whitefly (Homoptera: Aleyrodidae) on melon in the laboratory. J Econ Entomol., 95 (2002) 317-324.
[39] D. C. Núñez-López, A. Ramírez-Godoy and H. Restrepo-Diaz, Impact of kaolin particle film and synthetic insecticide applications on whitefly populations Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) and physiological attributes in bean (Phaseolus vulgaris) crop. Hortscience., 50 (2015) 1503-1508.
[40] D. A. Cook, M. E. Wakefield and G. P. Bryning, The physical action of three diatomaceous earths against the cuticle of the flour mite Acarus siro L. (Acari: Acaridae). Pest Manag Sci., 64 (2008) 141-146.
[41] D. M. Glenn, G. J. Puterka, F. J. Byrne and A. L. Devonshire, Hydrophobic particle films: a new paradigm for suppression of arthropod pests and plant diseases. J. Econ. Entomol., 92 (1999) 759-771.
[42] C. Vincent, G. Hallman, B. Panneton and F. Fleurat-Lessard, Management of agricultural insects with physical control methods. Annual Review of Entomology., 48 (2003) 261-281.
[43] G. Saour, Efficacy of kaolin particle film and selected synthetic insecticides against pistachio psyllid Agonoscena targionii (Homoptera: Psyllidae) infestation. Crop Prot., 24 (2005) 711-717.
[44] D. G. Hall, S. L. Lapointe and E. J. Wenninger, Effects of a particle film on biology and behavior of Diaphorina citri (Hemiptera: Psyllidae) and its infestations in citrus. J. Econ. Entomol., 100 (2007) 847-854.
[45] G. Saour, H. Ismail and A. Hashem, Impact of kaolin particle film, spirodiclofen acaricide, harpin protein, and an organic biostimulant on pear psylla Cacopsylla pyri (Hemiptera: Psyllidae). Intl. J. Pest Mgt., 56 (2010) 75-79.
[46] P. Bengochea, F. Budia, E. Vinuela and P. Medina, Are kaolin and copper treatments safe to the olive fruitfly parasitoid Psyttalia concolor? J Pest Sci., 87 (2014) 351-359.
[47] P. Kumar and H. M. Poehling, Effects of azadirachtin, abamectin and spinosad on sweetpotato whitefly Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) on tomato plants under laboratory and greenhouse conditions in the humid tropics. J. Econ. Entomol., 100 (2007) 411-420.
[48] P. Kumar, M. Whitten, G. Thoeming, C. Borgemeister and H. M. Poehling, Effects of bio-pesticides on Eretmocerus warrae (Hym. Aphelinidae), a parasitoid of Bemisia tabaci (Hom., Aleyrodidae). J. Appl. Entomol., 132 (2008) 605-613.
[49] K. A. Hoelmer, L. S. Osborne and R. K. Yokomi, Effects of neem extracts on beneficial insects in greenhouse culture. Proceeding, USDA Neem Workshop, Beltsville MD., (1990) 100-105.
[50] P. Caboni, M. Cabras, A. Angioni, M. Russo and P. Cabras, Persistence of azadirachtin residues on olives after field treatment. J. Agric. Food Chem., 50 (2002) 3491-3494.
[51] S. Johnson, P. Dureja and S. Dhingra, Photostablizers for azadirachtin-A (a Neem-based pesticide). J. Environ. Sci., 38 (2003) 451-462