DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues

Document Type : Research Article

Authors

1 College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan region of Iraq

2 Department of Chemistry, Payame Noor University, Tehran, Iran

Abstract

We have perused the absorbency of N2H4, P2H4, O2H2 and S2H2 molecules on the exterior level of pristine and Al- and Ga-embeded B12N12 nanostructures using through density functional theory (DFT) calculations. The consequences indicates that most favorable adsorption configurations are those in which the nitrogen atom of hydrazine (N2H4) is closed to boron, Aluminum and Gallium atoms of pristine and Al- and Ga-embeded B12N12 nanostructures, respectively, with adsorption energies circa -1.801, -2.397, and -2.071 eV. Geometry optimizations, energy calculations and NBO charge transfer were used to evaluate the impression ability of B12N12 for various analytes. The computed density of states (DOS) displaies that a notable orbital hybridization be take place between N2H4 P2H4, O2H2 and S2H2 molecules with pristine and Al- and Ga-embeded B11N12 nanostructures adsorption process. Finally, we concluded that the Al-embeded B11N12 is more desirable than that of the pristine for N2H4 adsorption.

Graphical Abstract

DFT study on sensing possibility of the pristine and Al- and Ga-embeded B12N12 nanostructures toward hydrazine and hydrogen peroxide and their analogues

Keywords


[1] Centers for Disease Control. Retrieved 16 August (2012).
[2] The PubChem Project. USA: National Center for Biotechnology Information. March 13-17, 2016
[3] National Institute for Occupational Safety and Health (NIOSH). December 29, 1970; 45 years ago
[4] H. K. Hall, Correlation of the Base Strengths of Amines. J. Am. Chem. Soc., 79 (1957) 5441-5444.
[5] A. Earnshaw, Chemistry of the Elements (2nd ed.). Butterworth-Heinemann, ISBN 0-08-037941-9 (1997).
[6] B. Martel and K. Cassidy, Chemical Risk Analysis: A Practical Handbook. Butterworth–Heinemann. (2004) p. 361. ISBN 1-903996-65-1.
[7] Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
[8] J.-P. Schirmann and P. Bourdauducq, Wiley-VCH, Weinheim, (2002) doi:10.1002/14356007.a13_177.
[9] D. Chakraborty, P. Chandra, Ab initio molecular orbital calculations of nuclear spin–spin coupling constants in PH−2, PH3, PH+4 and P2H4. J. Mol. Struc., 434 (1998) 75-84.
[10] V. Galasso, Green's function ab initio study of the outer valence ionization energies of N2H4, P2H4, As2H4, PH2NH2, PF2NH2 and AsH2NH2. J. Elec. Spec. Rel. Phen., 32 (1983) 359-369.
[11] D. W. Davies, Photoelectron spectra of hydrogen peroxide and hydrogen disulphide: ab initio calculations. Chem. Phys. Lett., 28 (1974) 520–522.
[12] P. Lazzeretti and R. Zanasi, On the calculation of parity-violating energies in hydrogen peroxide and hydrogen disulphide molecules within the random-phase approximation. Chem. Phys. Lett., 279 (1997) 349–354.
[13] H. Hunt, Robert, Leacock, A. Robert, C. Peters Wilbur, T. Hecht Karl., Internal‐Rotation in Hydrogen Peroxide: The Far‐Infrared Spectrum and the Determination of the Hindering Potential. J. Chem. Phys. 42 (1965) 1931.
[14] R. T. Paine, C. K. Narula, Synthetic routes to boron nitride. Chem. Rev., 90 (1990) 73-91.
[15] H. S. Wu, F. Q. Zhang, X. H. Xu, C. J. Zhang, H. Jiao, Geometric and Energetic Aspects of Aluminum Nitride Cages. J. Phys. Chem. A., 107 (2003) 204-209.
[16] H.Y. Zhu, T.G. Schmalz, D.J. Klein, Alternant boron nitride cages: A theoretical study. Int. J. Quantum Chem., 63 (1997) 393-401.
[17] D. Goldberg, Y. Bando, O. Stepahan, K. Kurashima, Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett., 73 (1998) 2441.
[18] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Potential of AlN Nanostructures as Hydrogen Storage Materials. ACS Nano., 3 (2009) 621-626.
[19] N.G.Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M.L.
Cohen, S.G. Louie, A. Zettl, Boron Nitride Nanotubes. Science., 269 (1995) 966-967.
[20] I. Narita, T. Oku, Effects of catalytic metals for synthesis of BN fullerene nanomaterials. Diamond. Relat. Mater., 12 (2003) 1146-1150.
[21] S. Iijima, C. J. Brabec, A.Maiti, J. Bernholc, Structural flexibility of carbon nanotubes. J. Chem. Phys., 104 (1996) 2089-2092.
[22] S. Xu, M. Zhang, Y. Zhao, B. Chen, J. Zhang, C.C. Sun, Stability and property of planar (BN)x clusters. Chem. Phys. Lett., 423 (2006) 212-214.
[23] G. Seifert, R. Fowler, D. Mitchell, D. Porezag, T. Frauenheim, Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett., 268 (1997) 352-358.
[24] D. Strout, Structure and Stability of Boron Nitrides:  Isomers of B12N12. J. Phys. Chem. A., 104 (2000) 3364-3366.
[25] D. Strout, L. Strout. Structure and Stability of Boron Nitrides:  The Crossover between Rings and Cages. J. Phys. Chem. A., 105 (2001) 261-263.
[26] F. Jensen, H. Toftlund, Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett., 201 (1993) 89-96.
[27] T. Oku, A. Nishiwaki and I. Narita, Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci. Technol. Adv. Mater., 5 (2004) 635-638.
[28] T. Oku, M. Kuno, H. Kitahara, I. Nartia, Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater., 3 (2001) 597-612.
[29] M. T. Baei, A. Ahmadi Peyghan, Z. Bagheri, A DFT Study on CO2 Interaction with a BN Nano-Cage. Bull. Korean Chem. Soc., 33 (2012) 3338–3342.
[30] A. Bahrami, S. Seidi, T. Baheri, M. Aghamohammadi, A first-principles study on the adsorption behavior of amphetamine on pristine, P- and Al-doped B12N12 nano-cages. Superlattic. Microstruct., 64 (2013) 265–273.
[31] E. Shakerzadeh, E. Khodayar, S. Noorizadeh, Theoretical assessment of phosgene adsorption behavior onto pristine, Al- and Ga-doped B12N12 and B16N16 nanoclusters. Comput. Mater. Sci., 118 (2016) 155–171.
[32] M. D. Esrafili, V. Mokhtar Teymurian, R. Nurazar, Catalytic dehydrogenation of hydrazine on silicon-carbide nanotubes: A DFT study on the kinetic issue. Surf. Sci., 632 (2015) 118–125.
[33] N. O’Boyle, A. Tenderholt and K. Langner, cclib: A library for package independent computational chemistry algorithms. J. Comput. Chem., 29 (2008) 839–845.
[34] F. Weinhold and C.R. Landis, Discovering Chemistry With Natural Bond Orbitals, John Wiley & Sons, (2012).
[35] M. W. Schmidt, K. K.Baldridge, J. A.Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen and S. Su, General atomic and molecular electronic structure system. J. Comput. Chem., 14 (1993) 1347-1363
[36] F. A. Bulat, A. Toro-Labbe, T. Brinck, J. S. Murray, P. Politzer, Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model., 16 (2010) 1679–1691.
[37] S.S. Li, Semiconductor physical electronics, 2nd edn. Springer, Heidelberg (2006)