Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring

Document Type : Research Article

Author

Department of Chemistry, Faculty of Basic Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

ABSTRACT
The adsorption of a toxic gas, cyanogen chloride (CNCl) on pristine, Al– and Si–doped BN nanosheet investigated using density functional theory (DFT). The adsorption energies of the most stable complexes of CNCl on pristine, Al– and Si–doped BN nanosheet are –19.96, –95.02 and –176.90 kj/mol, respectively. We found that the CNCl gas has a chemisorption interaction over the Al– and Si–doped BN, with significant change in the structure shape of the CNCl molecule. The value of adsorption interaction energy of Si-boron nitride is very large than that of the Al-boron nitride toward the toxic gas. As a result the Si-boron nitride nanosheet is more reactive to dissociate the gas molecule into safely small fragments. The adsorption of the CNCl molecule can significantly decrease the HOMO–LUMO energy gap of the Al–doped BN by about 14.06%. It is suggested that the Al–doped BN can be considered as a potential nanostructure for sensing the toxic CNCl.

Graphical Abstract

Sensing performance of boron nitride nanosheets to a toxic gas cyanogen chloride: Computational exploring

Keywords


G. C. Deng, Z. H. Zhang, B. Li, X. D. Gao, S. L. Zang, Determination of cyanogen chloride in the air pollution by spectrophotometry. Chin. J. Anal. Chem., 29 (2001) 565–568.
[2] Q .Yuan, Y. P. Zhao, L. Li, T. Wang, Ab Initio Study of ZnO-Based Gas-Sensing Mechanisms: Surface Reconstruction and Charge Transfer. J. Phys. Chem. C., 113 (2009) 6107–6113.
[3] M. T. Baei, A. Soltani, A. V. Moradi, E. T. Lemeski, Adsorption properties of N2O on (6,0), (7,0), and (8,0) zigzag single-walled boron nitride nanotubes: A computational study. Comput. Theoret. Chem., 970 (2011) 30–35.
[4] A. Soltani, A. V. Moradi, M. Bahari, A. Masoodi, S. Shojaee, Computational investigation of the electronic and structural properties of CN radical on the pristine and Al doped (6, 0) BN nanotubes. Physica B., 430 (2013) 20–26.
[5] M. T. Baei, Y. Kanani, V. J. Rezaei, A. Soltani, Adsorption phenomena of gas molecules upon Ga-doped BN nanotubes: A DFT study. Applied Surface Science., 295 (2014) 18–25.
[6] D. W. H. Fam, A. Palaniappan, A. I. Y. Tok, B. Liedberg, S. M. Moochhala, A review on technological aspects influencing commercialization of carbon nanotube sensors. Sens. Actuat. B: Chem., 157 (2011) 1–7.
[7] X. Zhou, W. Q. Tian, X. L. Wang, Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules. Sensors and Actuators B: Chemical., 151 (2010) 56–64.
[8] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, B12 N12 nano-cage as potential sensor for NO2 detection. Chin. J. Chem. Phys., 25 (2012) 60–64.
[9] W. Zeng, T. Liu, Z. Wang, Impact of Nb doping on gas sensing performance of TiO2 thick-film sensors. Sens. Actuat. B:Chem., http://dx.doi.org/10.1016/j.snb.2012.02.016 (2012).
[10] J. Beheshtian, Z. Bagheri, M. Kamfiroozi, A. Ahmadi, Toxic CO detection by B12N12 nanocluster. Microelectronics Journal, 42 (2011) 1400–1403.
[11] J. Beheshtian, M. Kamfiroozi, Z. Bagheri, A. Ahmadi, Computational study of CO and NO adsorption on magnesium oxide nanotubes. Physica E., 44 (2011) 546–549.
[12] J. Beheshtian, A. A. Peyghan, Z. Bagheri, Theoretical investigation of C60 fullerene functionalization with tetrazine. Comput. Theor. Chem., 992 (2012) 164–167.
[13] S. H. Lim, J. Luo, W. Ji, J. Lin, Synthesis of boron nitride nanotubes and its hydrogen uptake. Catalys. Today., 120 (2007) 346–350.
[14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric field effect in atomically thin carbon films. Science., 306 (2004) 666–669.
[15] J. M. G. Hernandez, G. H. Cocoletzi, E. C. Anota, DFT studies of the phenol adsorption on boron nitride sheets. J Mol Model., 18 (2012) 137–144.
[16] A. B. Preobrajenski, M. A. Nesterov, M. L. Ng, A. S. Vinogradov, N. Mortensson, Monolayer h-BN on lattice-mismatched metal surfaces: On the formation of the nanomesh. Chem. Phys. Lett., 446 (2007) 119.
[17] J. Y. Dai, P. Giannozzi, J. M. Yuan, Adsorption of pairs of NOx molecules on single-walled carbon nanotubes and formation of NO+ NO3 from NO2. Surf Sci., 603 (2009) 3234-3238.
[18] A. A. Peyghan, M. Noei, S. Yourdkhani, Al-doped graphene-like BN nanosheet as a sensor for para-nitrophenol: DFT study. Superlattices and Microstructures., 59 (2013) 115–122.
[19] J. Y. Dai, J. M. Yuan, Modulating the electronic and magnetic structures of P-doped graphene by molecule doping. J Phys Condens Matter., 22 (2010) 225501–225505.
[20] X. Jiang, Q. Weng, X. Wang, X. Li, J. Zhang, et al., Recent progress on fabrications and applications of boron nitride nanomaterials: a review. Journal of Materials Science & Technology., 31 (2015) 589–598.
[21] Z. G. Chen, J. Zou, G. Liu, F. Li, Y. Wang, et al., Novel boron nitride hollow nanoribbons. ACS Nano., 2 (2008) 2183–2191.
[22] C. Jin, F. Lin, K. Suenaga, S. Iijima, Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys. Rev. Lett., 102 (2009) 1905551–1905554.
[23] Y. C. Zhu, Y. Bando, L. W. Yin, D. Golberg, Field nanoemitters: ultrathin BN nanosheets protruding from Si3N4 nanowires. Nano Letters., 6 (2006) 2982–2986.
[24] M. Samadizadeh, A. A. Peyghan, S. F. Rastegar, Sensing behavior of BN nanosheet toward nitrous oxide: A DFT study. Chin. Chem. Lett., 26 (2015) 1042-1045.
[25] Y. H. Zhang, K. G. Zhou, X. C. Gou, K. F. Xie, H. L. Zhang, Y. Peng, Effects of dopant and defect on the adsorption of carbon monoxide on graphitic boron nitride sheet: A first-principles study. Chem. Phys. Lett., 484 (2010) 266.
[26] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., General atomic and molecular electronic structure system. J Comput. Chem., 14 (1993) 1347–1363.
[27] N. M. O’Boyle, A. L. Tenderholt, K. M. Langner, cclib: a library for package-independent computational chemistry algorithms. J. Comput. Chem., 29 (2008) 839–845.
[28] X. Deng, D. Zhang, M. Si, M. Deng, The improvement of the adsorption abilities of some gas molecules on g-BN sheet by carbon doping. Physica E., 44 (2011) 495–500.
[29] A. Soltani, M. T. Baei, A. S. Ghasemi, E. T. Lemeski, K. H. Amirabadi, Adsorption of cyanogen chloride over Al- and Ga-doped BN nanotubes. Superlattices and Microstructures., 07 (2014) 033.
[30] Z. M. Ao, J. Yang, S. Li, Q. Jiang, Enhancement of CO detection in Al doped grapheme. Chem. Phys. Lett., 461 (2008) 276–279.
[31] A. Ahmadi Peyghan, N. L. Hadipour, Z. Bagheri, Effects of Al Doping and Double-Antisite Defect on the Adsorption of HCN on a BC2N Nanotube: Density Functional Theory Studies. J Phys Chem C., 117 (2013) 2427–2432.
[32] S. S. Li, Semiconductor Physical Electronics, 2nd ed. Springer, USA (2006).
[33] S. F. Rastegar, A. A. Peyghan, N. L. Hadipour, Response of Si-and Al-doped graphenes toward HCN: a computational study. Applied Surface Science., 265 (2013) 412– 417.
[34] S. Stegmeier, M. Fleischer, A. Tawil, P. Hauptmann, K. Egly, K. Rose, Sensing mechanism of room temperature CO2 sensors based on primary amino groups. Sens. Actuat. B: Chem., 154 (2011) 270–276.